找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Sentry
31#
發(fā)表于 2025-3-26 21:06:04 | 只看該作者
Small-Area Orthogonal Drawings of 3-Connected Graphsonnected, then the area can be reduced even further to .. The drawing uses the 3-canonical order for (not necessarily planar) 3-connected graphs, which is a special Mondshein sequence and can hence be computed in linear time. To our knowledge, this is the first application of a Mondshein sequence in
32#
發(fā)表于 2025-3-27 02:24:13 | 只看該作者
Simultaneous Embeddings with Few Bends and Crossingsthat whenever . and . admit a ., they also admit a . in which every edge is a polygonal curve with few bends and every pair of edges has few crossings. Specifically: (1) if . and . are trees then one bend per edge and four crossings per edge pair suffice, (2) if . is a planar graph and . is a tree t
33#
發(fā)表于 2025-3-27 08:01:15 | 只看該作者
Rook-Drawing for Plane Graphse . nodes of . on the intersections of a regular grid, such that each row and column of the grid supports exactly one node. This paper focuses on rook-drawings of planar graphs. We first give a linear algorithm to compute a planar straight-line rook-drawing for outerplanar graphs. We then characteri
34#
發(fā)表于 2025-3-27 10:08:01 | 只看該作者
https://doi.org/10.1007/978-981-19-7384-0ses a graph in such a way that during browsing, the geometry of the entities is stable, and the viewer is responsive. Our case studies indicate that GraphMaps is useful in gaining an overview of a large graph, and also in exploring a graph on a finer level of detail.
35#
發(fā)表于 2025-3-27 16:28:58 | 只看該作者
36#
發(fā)表于 2025-3-27 21:00:25 | 只看該作者
37#
發(fā)表于 2025-3-27 23:13:31 | 只看該作者
38#
發(fā)表于 2025-3-28 05:59:49 | 只看該作者
39#
發(fā)表于 2025-3-28 07:21:51 | 只看該作者
40#
發(fā)表于 2025-3-28 12:42:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 06:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
雷波县| 汝州市| 朝阳区| 舞钢市| 甘孜| 沐川县| 扶沟县| 乌拉特前旗| 龙陵县| 灵丘县| 鄢陵县| 师宗县| 静海县| 绥芬河市| 色达县| 工布江达县| 沾化县| 天峨县| 稻城县| 社旗县| 湘阴县| 台山市| 蓝山县| 金寨县| 博客| 苗栗县| 衡南县| 贵德县| 沅江市| 普安县| 乌鲁木齐县| 中江县| 甘德县| 弥渡县| 托克逊县| 耿马| 泸州市| 阿克苏市| 乃东县| 西平县| 威信县|