找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
41#
發(fā)表于 2025-3-28 17:46:53 | 只看該作者
Rectilinear Planarity of?Partial 2-Trees are based on an extensive study and a deeper understanding of the notion of orthogonal spirality, introduced in 1998 to describe how much an orthogonal drawing of a subgraph is rolled-up in an orthogonal drawing of the graph.
42#
發(fā)表于 2025-3-28 19:38:49 | 只看該作者
-Orientations with?Few Transitive Edgesr of transitive edges with respect to unconstrained .-orientations computed via classical .-numbering algorithms. Moreover, focusing on popular graph drawing algorithms that apply an .-orientation as a preliminary step, we show that reducing the number of transitive edges leads to drawings that are much more compact.
43#
發(fā)表于 2025-3-29 01:34:23 | 只看該作者
Migrant Domestic Workers in the Middle Eastss Gabriel drawing. The characterization leads to a linear time testing algorithm. We also show that when at least one of the graphs in the pair . is complete .-partite with . and all partition sets in the two graphs have size greater than one, the pair does not admit a mutual witness Gabriel drawing.
44#
發(fā)表于 2025-3-29 03:26:18 | 只看該作者
45#
發(fā)表于 2025-3-29 09:04:13 | 只看該作者
https://doi.org/10.1057/9781137308634. A PCOD is . if each edge is drawn with monotonically increasing y-coordinates and . if no edge starts with decreasing y-coordinates. We study the split complexity of PCODs and (quasi-)upward PCODs for various classes of graphs.
46#
發(fā)表于 2025-3-29 13:52:18 | 只看該作者
Mutual Witness Gabriel Drawings of?Complete Bipartite Graphsss Gabriel drawing. The characterization leads to a linear time testing algorithm. We also show that when at least one of the graphs in the pair . is complete .-partite with . and all partition sets in the two graphs have size greater than one, the pair does not admit a mutual witness Gabriel drawing.
47#
發(fā)表于 2025-3-29 16:07:40 | 只看該作者
48#
發(fā)表于 2025-3-29 20:55:15 | 只看該作者
Planar Confluent Orthogonal Drawings of?4-Modal Digraphs. A PCOD is . if each edge is drawn with monotonically increasing y-coordinates and . if no edge starts with decreasing y-coordinates. We study the split complexity of PCODs and (quasi-)upward PCODs for various classes of graphs.
49#
發(fā)表于 2025-3-30 03:22:48 | 只看該作者
50#
發(fā)表于 2025-3-30 07:13:30 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 19:58
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
思茅市| 尼木县| 肥西县| 洞口县| 金华市| 石家庄市| 洛宁县| 临沭县| 朔州市| 勐海县| 盱眙县| 林芝县| 株洲县| 绥滨县| 青神县| 泰安市| 木兰县| 上思县| 宁阳县| 黑水县| 吉林省| 遵义市| 荃湾区| 邓州市| 通海县| 贺兰县| 兴城市| 周口市| 天门市| 黄大仙区| 逊克县| 肥西县| 郯城县| 鹤山市| 白河县| 抚宁县| 阜城县| 肃南| 肃北| 伊宁市| 三都|