找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 密度
31#
發(fā)表于 2025-3-26 23:29:54 | 只看該作者
32#
發(fā)表于 2025-3-27 05:03:03 | 只看該作者
Minimizing an?Uncrossed Collection of?Drawings satisfy some property that is useful for graph visualization. We propose investigating a property where each edge is not crossed in at least one drawing in the collection. We call such collection .. This property is motivated by a quintessential problem of the crossing number, where one asks for a
33#
發(fā)表于 2025-3-27 06:20:04 | 只看該作者
34#
發(fā)表于 2025-3-27 13:29:22 | 只看該作者
35#
發(fā)表于 2025-3-27 15:31:50 | 只看該作者
On 3-Coloring Circle Graphsnd only if their endpoints are pairwise distinct and alternate in .. Therefore, the problem of determining whether . has a .-page book embedding with spine order?. is equivalent to deciding whether . can be colored with . colors. Finding a .-coloring for a circle graph is known to be NP-complete for
36#
發(fā)表于 2025-3-27 17:52:37 | 只看該作者
The Complexity of?Recognizing Geometric Hypergraphsf a hypergraph ., each vertex . is associated with a point . and each hyperedge . is associated with a connected set . such that . for all .. We say that a given hypergraph . is . by some (infinite) family . of sets in ., if there exist . and . such that (.,?.) is a geometric representation of?.. Fo
37#
發(fā)表于 2025-3-27 23:33:55 | 只看該作者
On the?Complexity of?Lombardi Graph Drawingertices have perfect angular resolution, i.e., all angles incident to a vertex?. have size?.. We prove that it is .-complete to determine whether a given graph admits a Lombardi drawing respecting a fixed cyclic ordering of the incident edges around each vertex. In particular, this implies .-hardnes
38#
發(fā)表于 2025-3-28 04:25:34 | 只看該作者
39#
發(fā)表于 2025-3-28 09:38:22 | 只看該作者
https://doi.org/10.1007/978-1-349-15038-0We study two notions of fan-planarity introduced by (Cheong et al., GD22), called weak and strong fan-planarity, which separate two non-equivalent definitions of fan-planarity in the literature. We prove?that not every weakly fan-planar graph is strongly fan-planar, while the upper bound on the edge density is the same for both families.
40#
發(fā)表于 2025-3-28 12:56:57 | 只看該作者
Weakly and?Strongly Fan-Planar GraphsWe study two notions of fan-planarity introduced by (Cheong et al., GD22), called weak and strong fan-planarity, which separate two non-equivalent definitions of fan-planarity in the literature. We prove?that not every weakly fan-planar graph is strongly fan-planar, while the upper bound on the edge density is the same for both families.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 01:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
砚山县| 汝州市| 广昌县| 安达市| 龙游县| 南充市| 双江| 庐江县| 大同县| 台北市| 柏乡县| 广南县| 康保县| 新兴县| 镇安县| 石狮市| 达日县| 澄迈县| 博乐市| 南康市| 沐川县| 湘阴县| 三亚市| 清镇市| 保山市| 翼城县| 新建县| 林州市| 宝山区| 抚州市| 扬州市| 南召县| 邵东县| 民权县| 嘉定区| 涿州市| 永和县| 镇坪县| 大英县| 洞口县| 石景山区|