找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 手鐲
21#
發(fā)表于 2025-3-25 04:20:36 | 只看該作者
22#
發(fā)表于 2025-3-25 11:18:37 | 只看該作者
23#
發(fā)表于 2025-3-25 11:58:04 | 只看該作者
https://doi.org/10.1007/978-94-009-8733-3 of Lazard et al. [Theor. Comput. Sci. . (2019), 88–94] and, for any given constant ., we provide a 2-tree which does not admit a planar straight-line drawing with a ratio bounded by .. When the ratio is restricted to adjacent edges only, we prove that any 2-tree admits a planar straight-line drawin
24#
發(fā)表于 2025-3-25 18:16:20 | 只看該作者
25#
發(fā)表于 2025-3-26 00:04:29 | 只看該作者
26#
發(fā)表于 2025-3-26 01:49:47 | 只看該作者
https://doi.org/10.1007/978-981-15-7401-6ealizing . by a polygon can be seen as that of constructing a straight-line drawing of a graph with prescribed angles at vertices, and hence, it is a special case of the well studied problem of constructing an .. In 2D, we characterize sequences . for which every generic polygon . realizing . has at
27#
發(fā)表于 2025-3-26 05:46:04 | 只看該作者
https://doi.org/10.1007/978-1-349-07932-2that no two edges in the same stack cross and no two edges in the same queue nest. In 1992, Heath and Rosenberg conjectured that every planar graph admits a mixed 1-stack 1-queue layout. Recently, Pupyrev disproved this conjectured by demonstrating a planar partial 3-tree that does not admit a 1-sta
28#
發(fā)表于 2025-3-26 10:24:55 | 只看該作者
https://doi.org/10.1007/978-1-349-22259-9nt by a separation pair. We investigate the existence and the computation time of schematic representations of the structure of such a graph where the main component is drawn as a disk, the vertices that take part in separation pairs are points on the boundary of the disk, and the small components a
29#
發(fā)表于 2025-3-26 14:29:39 | 只看該作者
Hubert ?sterle,Rainer Riehm,Petra Voglerene transfer have occurred. Formally, a tree-based network . consists of a phylogenetic tree . (a rooted, binary, leaf-labeled tree) and so-called reticulation edges that span between edges of .. The network . is typically visualized by drawing . downward and planar and reticulation edges with one o
30#
發(fā)表于 2025-3-26 17:23:06 | 只看該作者
https://doi.org/10.1007/978-3-031-45147-8ia which have not yet been explicitly optimized in such fashion (e.g., vertex resolution, angular resolution, aspect ratio). We provide quantitative and qualitative evidence of the effectiveness of . with experimental data and a functional prototype: ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇义县| 乐平市| 九台市| 肥西县| 兴国县| 靖边县| 赤壁市| 保康县| 安阳市| 福海县| 连江县| 六盘水市| 柘城县| 长寿区| 望江县| 灵川县| 休宁县| 双牌县| 赞皇县| 厦门市| 五华县| 彩票| 徐水县| 北宁市| 贵州省| 晋中市| 仙居县| 滕州市| 新乡县| 清原| 唐山市| 永昌县| 怀远县| 浮梁县| 河北省| 丰台区| 邮箱| 改则县| 赤峰市| 恭城| 甘泉县|