找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 手鐲
21#
發(fā)表于 2025-3-25 04:20:36 | 只看該作者
22#
發(fā)表于 2025-3-25 11:18:37 | 只看該作者
23#
發(fā)表于 2025-3-25 11:58:04 | 只看該作者
https://doi.org/10.1007/978-94-009-8733-3 of Lazard et al. [Theor. Comput. Sci. . (2019), 88–94] and, for any given constant ., we provide a 2-tree which does not admit a planar straight-line drawing with a ratio bounded by .. When the ratio is restricted to adjacent edges only, we prove that any 2-tree admits a planar straight-line drawin
24#
發(fā)表于 2025-3-25 18:16:20 | 只看該作者
25#
發(fā)表于 2025-3-26 00:04:29 | 只看該作者
26#
發(fā)表于 2025-3-26 01:49:47 | 只看該作者
https://doi.org/10.1007/978-981-15-7401-6ealizing . by a polygon can be seen as that of constructing a straight-line drawing of a graph with prescribed angles at vertices, and hence, it is a special case of the well studied problem of constructing an .. In 2D, we characterize sequences . for which every generic polygon . realizing . has at
27#
發(fā)表于 2025-3-26 05:46:04 | 只看該作者
https://doi.org/10.1007/978-1-349-07932-2that no two edges in the same stack cross and no two edges in the same queue nest. In 1992, Heath and Rosenberg conjectured that every planar graph admits a mixed 1-stack 1-queue layout. Recently, Pupyrev disproved this conjectured by demonstrating a planar partial 3-tree that does not admit a 1-sta
28#
發(fā)表于 2025-3-26 10:24:55 | 只看該作者
https://doi.org/10.1007/978-1-349-22259-9nt by a separation pair. We investigate the existence and the computation time of schematic representations of the structure of such a graph where the main component is drawn as a disk, the vertices that take part in separation pairs are points on the boundary of the disk, and the small components a
29#
發(fā)表于 2025-3-26 14:29:39 | 只看該作者
Hubert ?sterle,Rainer Riehm,Petra Voglerene transfer have occurred. Formally, a tree-based network . consists of a phylogenetic tree . (a rooted, binary, leaf-labeled tree) and so-called reticulation edges that span between edges of .. The network . is typically visualized by drawing . downward and planar and reticulation edges with one o
30#
發(fā)表于 2025-3-26 17:23:06 | 只看該作者
https://doi.org/10.1007/978-3-031-45147-8ia which have not yet been explicitly optimized in such fashion (e.g., vertex resolution, angular resolution, aspect ratio). We provide quantitative and qualitative evidence of the effectiveness of . with experimental data and a functional prototype: ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三都| 乐昌市| 界首市| 桦南县| 朝阳市| 宝鸡市| 玉树县| 洪泽县| 延庆县| 西乌珠穆沁旗| 南郑县| 乐陵市| 保康县| 大方县| 宁城县| 祁阳县| 屯留县| 漾濞| 永昌县| 信宜市| 阿拉尔市| 德惠市| 洱源县| 彭阳县| 吉木萨尔县| 永清县| 葫芦岛市| 广昌县| 常山县| 扎兰屯市| 托克托县| 邛崃市| 卢氏县| 阿鲁科尔沁旗| 南漳县| 西盟| 舞阳县| 重庆市| 长葛市| 当雄县| 陵水|