找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: charity
31#
發(fā)表于 2025-3-27 00:30:26 | 只看該作者
Retinal Detachment with Horseshoe Tearset is a path, in such a way that the resulting subgraph of . is planar. We study this problem when . is a simple topological graph, and establish its complexity in relation to .-planarity. We prove that . . is NP-complete even when . and . is a simple 3-plane graph, while it can be solved in linear time, for any ., when . is 1-plane.
32#
發(fā)表于 2025-3-27 01:39:41 | 只看該作者
33#
發(fā)表于 2025-3-27 07:38:22 | 只看該作者
34#
發(fā)表于 2025-3-27 11:41:04 | 只看該作者
35#
發(fā)表于 2025-3-27 15:11:56 | 只看該作者
36#
發(fā)表于 2025-3-27 17:55:51 | 只看該作者
Image-Based Graph Visualization: Advances and Challengesbetween graph and scivis/image datasets that lead to limitations of current image-based graph visualization techniques. Finally, we consider these limitations to propose a number of future work directions for extending the effectiveness and range of image-based graph visualization.
37#
發(fā)表于 2025-3-27 23:35:45 | 只看該作者
Compact Drawings of 1-Planar Graphs with Right-Angle Crossings and Few Bendshen, we show that every .-vertex 1-planar graph admits a 1-planar RAC drawing with at most two bends per edge on a grid of size .. Finally, we make two known algorithms embedding-preserving; for drawing 1-planar RAC graphs with at most one bend per edge and for drawing IC-planar RAC graphs straight-line.
38#
發(fā)表于 2025-3-28 02:10:17 | 只看該作者
39#
發(fā)表于 2025-3-28 07:35:46 | 只看該作者
Microsurgery in Guided Bone Regeneration,ere the clusters are allowed to form arbitrary hierarchies. We strengthen this result by showing that . is polynomial-time equivalent to ., where each cluster induces an independent set. We discuss the consequences of these results.
40#
發(fā)表于 2025-3-28 10:52:08 | 只看該作者
Oronasal Hypophysis Operations, prove that every such set . can be used to construct 2-bend upward planar drawings of .-vertex planar .-graphs with at most . bends in?total. Our main?tool is a constructive technique that?runs?in?linear?time.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 16:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵山县| 台江县| 静安区| 长治市| 马龙县| 仙居县| 湄潭县| 淮阳县| 鹿泉市| 信阳市| 陇南市| 通海县| 红原县| 新竹县| 富锦市| 沈阳市| 凤城市| 丹东市| 松桃| 张家口市| 龙泉市| 文安县| 江华| 台江县| 桐乡市| 乌鲁木齐县| 宝坻区| 平塘县| 滕州市| 长治县| 鄢陵县| 应用必备| 南澳县| 万盛区| 舒兰市| 进贤县| 措勤县| 平乡县| 塔河县| 河南省| 丽江市|