找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 支票
41#
發(fā)表于 2025-3-28 18:20:28 | 只看該作者
42#
發(fā)表于 2025-3-28 19:44:38 | 只看該作者
43#
發(fā)表于 2025-3-29 00:06:24 | 只看該作者
Planar and Quasi Planar Simultaneous Geometric Embeddingwhere Γ. and Γ. are required to be . (i.e., they can have crossings provided that there are no three mutually crossing edges). This relaxation allows for the simultaneous embedding of pairs of planar graphs that are not simultaneously embeddable in the classical SGE setting and opens up to several new interesting research questions.
44#
發(fā)表于 2025-3-29 03:10:42 | 只看該作者
45#
發(fā)表于 2025-3-29 08:29:16 | 只看該作者
https://doi.org/10.1007/978-1-349-21622-2dge has a constant number of bends. If the common graph is biconnected and induced, a straight-line drawing exists. This yields the first efficient testing algorithm for simultaneous geometric embedding (.) for a non-trivial class of graphs.
46#
發(fā)表于 2025-3-29 14:04:23 | 只看該作者
47#
發(fā)表于 2025-3-29 16:58:38 | 只看該作者
https://doi.org/10.1007/978-3-322-85955-6the combinatorial and the algorithmic point of view. We prove tight bounds on the density of constrained versions of fan-planar drawings and study the relationship between fan-planarity and .-planarity. Also, we prove that testing fan-planarity in the variable embedding setting is NP-complete.
48#
發(fā)表于 2025-3-29 22:58:25 | 只看該作者
49#
發(fā)表于 2025-3-30 01:22:47 | 只看該作者
50#
發(fā)表于 2025-3-30 05:02:10 | 只看該作者
Luatodonotes: Boundary Labeling for Annotations in Textses (straight-line, rectilinear, and Bézier) and modify existing algorithms to allow for annotations of varying height. We have implemented our algorithms in Lua; they are available for download as an easy-to-use Luatex package.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
寿阳县| 岫岩| 新民市| 合山市| 怀来县| 天柱县| 新干县| 如东县| 静安区| 无极县| 玉树县| 祥云县| 平远县| 怀化市| 浮梁县| 长沙县| 濮阳县| 霍林郭勒市| 台北县| 博兴县| 正蓝旗| 喜德县| 东阿县| 万源市| 梅河口市| 巴楚县| 宁津县| 息烽县| 铁岭县| 沙坪坝区| 本溪市| 郴州市| 遂平县| 邯郸市| 西峡县| 鱼台县| 砚山县| 阿拉善左旗| 连南| 建德市| 南乐县|