找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

1234567
返回列表
打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 萬(wàn)靈藥
61#
發(fā)表于 2025-4-1 03:32:35 | 只看該作者
62#
發(fā)表于 2025-4-1 08:51:31 | 只看該作者
Microbiome in Idiopathic Pulmonary Fibrosis, it take to untangle ., i.e., to turn it into a simple polygon, if in each step we can arbitrarily relocate one of its vertices. It is shown that in some cases one has to move all but at most .((. log .).) vertices. On the other hand, every polygon . can be untangled in at most . steps. Some related questions are also considered.
63#
發(fā)表于 2025-4-1 13:50:15 | 只看該作者
64#
發(fā)表于 2025-4-1 15:55:27 | 只看該作者
Fast Compaction for Orthogonal Drawings with Vertices of Prescribed Sizeitical constraint for manypractical applications like UML. The algorithm provides a drastic improvement on previous approaches. It has linear worst case running time and experiments show that it performs veryw ell in practice.
65#
發(fā)表于 2025-4-1 18:38:14 | 只看該作者
Untangling a Polygon it take to untangle ., i.e., to turn it into a simple polygon, if in each step we can arbitrarily relocate one of its vertices. It is shown that in some cases one has to move all but at most .((. log .).) vertices. On the other hand, every polygon . can be untangled in at most . steps. Some related questions are also considered.
66#
發(fā)表于 2025-4-2 00:01:16 | 只看該作者
https://doi.org/10.1007/978-981-13-8495-0wires is equivalent to finding the drawing in which the edges are drawn as thick as possible. To the best of our knowledge this is the first algorithm that finds the maximal distance between any two wires and allows for wires of variable thickness. The previous best known result for the correspondin
1234567
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
芜湖县| 康平县| 昌平区| 民权县| 西青区| 荣昌县| 瑞金市| 鄢陵县| 雅江县| 万山特区| 霍林郭勒市| 花莲县| 修文县| 黄梅县| 青海省| 白朗县| 耒阳市| 新建县| 高台县| 商河县| 花莲县| 大田县| 武山县| 南木林县| 扎鲁特旗| 南木林县| 灵丘县| 班戈县| 尚志市| 沅陵县| 台州市| 康定县| 安西县| 迁安市| 怀集县| 潞西市| 富川| 津南区| 长汀县| 宿松县| 新密市|