找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

1234567
返回列表
打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 萬(wàn)靈藥
61#
發(fā)表于 2025-4-1 03:32:35 | 只看該作者
62#
發(fā)表于 2025-4-1 08:51:31 | 只看該作者
Microbiome in Idiopathic Pulmonary Fibrosis, it take to untangle ., i.e., to turn it into a simple polygon, if in each step we can arbitrarily relocate one of its vertices. It is shown that in some cases one has to move all but at most .((. log .).) vertices. On the other hand, every polygon . can be untangled in at most . steps. Some related questions are also considered.
63#
發(fā)表于 2025-4-1 13:50:15 | 只看該作者
64#
發(fā)表于 2025-4-1 15:55:27 | 只看該作者
Fast Compaction for Orthogonal Drawings with Vertices of Prescribed Sizeitical constraint for manypractical applications like UML. The algorithm provides a drastic improvement on previous approaches. It has linear worst case running time and experiments show that it performs veryw ell in practice.
65#
發(fā)表于 2025-4-1 18:38:14 | 只看該作者
Untangling a Polygon it take to untangle ., i.e., to turn it into a simple polygon, if in each step we can arbitrarily relocate one of its vertices. It is shown that in some cases one has to move all but at most .((. log .).) vertices. On the other hand, every polygon . can be untangled in at most . steps. Some related questions are also considered.
66#
發(fā)表于 2025-4-2 00:01:16 | 只看該作者
https://doi.org/10.1007/978-981-13-8495-0wires is equivalent to finding the drawing in which the edges are drawn as thick as possible. To the best of our knowledge this is the first algorithm that finds the maximal distance between any two wires and allows for wires of variable thickness. The previous best known result for the correspondin
1234567
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湘乡市| 西平县| 凤冈县| 娄烦县| 民权县| 广德县| 屯昌县| 韶关市| 内江市| 永修县| 娄烦县| 芜湖市| 招远市| 金坛市| 岐山县| 龙泉市| 张北县| 达日县| 大厂| 修文县| 湖南省| 庆安县| 天峻县| 鄢陵县| 阿图什市| 民勤县| 萍乡市| 敦化市| 玉屏| 松滋市| 神木县| 甘南县| 江津市| 武威市| 谢通门县| 金溪县| 通道| 丽水市| 舒城县| 怀宁县| 南安市|