找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 撕成碎片
41#
發(fā)表于 2025-3-28 14:52:35 | 只看該作者
42#
發(fā)表于 2025-3-28 19:18:56 | 只看該作者
J. A. Rubiolo,L. M. Botana,P. Martínez segments between points of .. It is known that, for any fixed ., any geometric graph . on n vertices with no . pairwise crossing edges contains at most .(. log .) edges. In this paper we give a new, simpler proof of this bound, and show that the same bound holds also when the edges of . are represe
43#
發(fā)表于 2025-3-29 00:12:47 | 只看該作者
44#
發(fā)表于 2025-3-29 03:43:38 | 只看該作者
A polyhedral approach to the multi-layer crossing minimization problem,f the multi-layer crossing minimization problem, we examine the 2-layer case and derive several classes of facets of the associated polytope. Preliminary computational results for 2- and 3-layer instances indicate, that the usage of the corresponding facet-defining inequalities in a branch-and-cut a
45#
發(fā)表于 2025-3-29 09:32:39 | 只看該作者
On embedding an outer-planar graph in a point set,ght-line embedding of . in ., improving upon the algorithm in [GMPP91, CU96] that requires .(..) time. Our algorithm is near-optimal as there is an .(. log .) lower bound for the problem [BMS95]. We present a simpler .(.) time and .(.) space algorithm to compute a straight-line embedding of . in . w
46#
發(fā)表于 2025-3-29 13:05:09 | 只看該作者
Three-dimensional grid drawings of graphs, of . are pairwise non-crossing. It is shown that for any fixed . ≥ 2, every .-colorable graph of . vertices has a three-dimensional grid drawing that fits into a box of volume .(..). The order of magnitude of this bound cannot be improved.
47#
發(fā)表于 2025-3-29 16:00:06 | 只看該作者
48#
發(fā)表于 2025-3-29 21:02:00 | 只看該作者
49#
發(fā)表于 2025-3-30 01:42:40 | 只看該作者
50#
發(fā)表于 2025-3-30 08:02:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 11:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汉寿县| 平陆县| 晋中市| 广汉市| 灌阳县| 大安市| 灯塔市| 台安县| 乌拉特后旗| 嘉鱼县| 百色市| 日土县| 简阳市| 利川市| 建湖县| 安庆市| 太仆寺旗| 广平县| 石泉县| 祁东县| 沈阳市| 廉江市| 武清区| 平武县| 板桥市| 高雄县| 无极县| 方城县| 长阳| 新巴尔虎右旗| 玛曲县| 阜南县| 松潘县| 罗江县| 丹寨县| 乌苏市| 宁武县| 柳河县| 包头市| 固阳县| 玛纳斯县|