找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 撕成碎片
41#
發(fā)表于 2025-3-28 14:52:35 | 只看該作者
42#
發(fā)表于 2025-3-28 19:18:56 | 只看該作者
J. A. Rubiolo,L. M. Botana,P. Martínez segments between points of .. It is known that, for any fixed ., any geometric graph . on n vertices with no . pairwise crossing edges contains at most .(. log .) edges. In this paper we give a new, simpler proof of this bound, and show that the same bound holds also when the edges of . are represe
43#
發(fā)表于 2025-3-29 00:12:47 | 只看該作者
44#
發(fā)表于 2025-3-29 03:43:38 | 只看該作者
A polyhedral approach to the multi-layer crossing minimization problem,f the multi-layer crossing minimization problem, we examine the 2-layer case and derive several classes of facets of the associated polytope. Preliminary computational results for 2- and 3-layer instances indicate, that the usage of the corresponding facet-defining inequalities in a branch-and-cut a
45#
發(fā)表于 2025-3-29 09:32:39 | 只看該作者
On embedding an outer-planar graph in a point set,ght-line embedding of . in ., improving upon the algorithm in [GMPP91, CU96] that requires .(..) time. Our algorithm is near-optimal as there is an .(. log .) lower bound for the problem [BMS95]. We present a simpler .(.) time and .(.) space algorithm to compute a straight-line embedding of . in . w
46#
發(fā)表于 2025-3-29 13:05:09 | 只看該作者
Three-dimensional grid drawings of graphs, of . are pairwise non-crossing. It is shown that for any fixed . ≥ 2, every .-colorable graph of . vertices has a three-dimensional grid drawing that fits into a box of volume .(..). The order of magnitude of this bound cannot be improved.
47#
發(fā)表于 2025-3-29 16:00:06 | 只看該作者
48#
發(fā)表于 2025-3-29 21:02:00 | 只看該作者
49#
發(fā)表于 2025-3-30 01:42:40 | 只看該作者
50#
發(fā)表于 2025-3-30 08:02:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 11:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三门县| 汝阳县| 房山区| 响水县| 通江县| 新平| 古浪县| 临泽县| 北票市| 康乐县| 普兰店市| 石门县| 淮安市| 商丘市| 亳州市| 镇原县| 启东市| 漠河县| 自治县| 读书| 肥城市| 兴文县| 陕西省| 同仁县| 庆阳市| 石渠县| 神池县| 安阳市| 天柱县| 伽师县| 六盘水市| 喀什市| 夏津县| 丹阳市| 汽车| 佛学| 翼城县| 闸北区| 垦利县| 武夷山市| 华蓥市|