找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Magnanimous
41#
發(fā)表于 2025-3-28 16:46:13 | 只看該作者
Kyeong-Nam Yu,Pranav Joshi,Moo-Yeal Leengs has been known for a while, it is rather complicated to understand and implement, and the output is not uniquely determined. We present a new approach that is simpler and more intuitive, and that computes a newly defined leftist canonical ordering of a triconnected graph which is a uniquely dete
42#
發(fā)表于 2025-3-28 19:28:17 | 只看該作者
Array-CGH and SNP-Arrays, the New Karyotype.,..)?
43#
發(fā)表于 2025-3-29 00:55:09 | 只看該作者
https://doi.org/10.1007/978-3-642-87496-3, such that each graph is plane. Geometric simultaneous embedding is a current topic in graph drawing and positive and negative results are known for various classes of graphs. So far only connected graphs have been considered. In this paper we present the first results for the setting where one of
44#
發(fā)表于 2025-3-29 05:44:49 | 只看該作者
45#
發(fā)表于 2025-3-29 10:53:57 | 只看該作者
46#
發(fā)表于 2025-3-29 15:05:11 | 只看該作者
47#
發(fā)表于 2025-3-29 18:54:34 | 只看該作者
Drawing Hamiltonian Cycles with No Large Angles cycle) consisting of . straight line edges such that the angle between any two consecutive edges is at most 2./3. For .?=?4 and 6, this statement is tight. It is also shown that every even-element point set . can be partitioned into at most two subsets, .. and .., each admitting a spanning tour wit
48#
發(fā)表于 2025-3-29 23:37:06 | 只看該作者
49#
發(fā)表于 2025-3-30 02:52:22 | 只看該作者
Drawing 3-Polytopes with Good Vertex Resolutioned to a one-dimensional problem, since it is sufficient to guarantee distinct integer .-coordinates. We develop an algorithm that yields an embedding with the desired property such that the polytope is contained in a 2(.???2)×1 ×1 box. The constructed embedding can be scaled to a grid embedding whos
50#
發(fā)表于 2025-3-30 06:29:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
府谷县| 奉化市| 南康市| 贵阳市| 郑州市| 江城| 华坪县| 乐清市| 静宁县| 高雄市| 千阳县| 大方县| 临沭县| 张家港市| 商城县| 江安县| 微山县| 肇东市| 富蕴县| 且末县| 安丘市| 绍兴市| 静宁县| 闽清县| 萨嘎县| 鹰潭市| 潼关县| 祁门县| 万源市| 尼勒克县| 华容县| 印江| 浠水县| 澎湖县| 安阳市| 尉犁县| 巴林右旗| 阳山县| 玉田县| 通州市| 冕宁县|