找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 惡夢
31#
發(fā)表于 2025-3-26 21:54:51 | 只看該作者
32#
發(fā)表于 2025-3-27 01:08:30 | 只看該作者
33#
發(fā)表于 2025-3-27 08:28:39 | 只看該作者
Nanofabrication by Self-Assembly, contribution of the paper consists of drawings of asymptotically optimal total resolution for complete graphs (circular drawings) and for complete bipartite graphs (2-layered drawings). In addition, we present and experimentally evaluate a force-directed based algorithm that constructs drawings of large total resolution.
34#
發(fā)表于 2025-3-27 11:41:59 | 只看該作者
Imtiaz Ahmed,M. Fernando Gonzalez-Zalbaalization technique for queue and deque (double-ended queue) graphs. It provides new insights into the characteristics of these fundamental data structures and extends to the visualization of mixed layouts with stacks and queues. Our main result states that a graph is a deque graph if and only if it has a plane linear cylindric drawing.
35#
發(fā)表于 2025-3-27 14:54:30 | 只看該作者
36#
發(fā)表于 2025-3-27 17:52:51 | 只看該作者
37#
發(fā)表于 2025-3-27 23:30:06 | 只看該作者
Maximizing the Total Resolution of Graphs contribution of the paper consists of drawings of asymptotically optimal total resolution for complete graphs (circular drawings) and for complete bipartite graphs (2-layered drawings). In addition, we present and experimentally evaluate a force-directed based algorithm that constructs drawings of large total resolution.
38#
發(fā)表于 2025-3-28 06:08:47 | 只看該作者
39#
發(fā)表于 2025-3-28 08:46:43 | 只看該作者
On Graphs Supported by Line Setsby any set of parallel lines. On the negative side, we prove that no set of . lines that intersect in a common point supports all .-vertex planar graphs. Finally, we show that there exists a set of . lines in general position that does not support all .-vertex planar graphs.
40#
發(fā)表于 2025-3-28 10:43:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 19:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌鲁木齐市| 治县。| 利津县| 蓬安县| 都江堰市| 凤城市| 罗江县| 维西| 沙河市| 伊春市| 凌海市| 墨竹工卡县| 瑞金市| 临安市| 闸北区| 江口县| 邵阳县| 宜阳县| 杭锦后旗| 宕昌县| 辉县市| 灵台县| 嘉祥县| 平远县| 灯塔市| 明溪县| 丰原市| 镇平县| 万盛区| 射阳县| 田林县| 诏安县| 黄山市| 普安县| 祁阳县| 茶陵县| 唐河县| 兴和县| 农安县| 贵德县| 通城县|