找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: 惡夢
31#
發(fā)表于 2025-3-26 21:54:51 | 只看該作者
32#
發(fā)表于 2025-3-27 01:08:30 | 只看該作者
33#
發(fā)表于 2025-3-27 08:28:39 | 只看該作者
Nanofabrication by Self-Assembly, contribution of the paper consists of drawings of asymptotically optimal total resolution for complete graphs (circular drawings) and for complete bipartite graphs (2-layered drawings). In addition, we present and experimentally evaluate a force-directed based algorithm that constructs drawings of large total resolution.
34#
發(fā)表于 2025-3-27 11:41:59 | 只看該作者
Imtiaz Ahmed,M. Fernando Gonzalez-Zalbaalization technique for queue and deque (double-ended queue) graphs. It provides new insights into the characteristics of these fundamental data structures and extends to the visualization of mixed layouts with stacks and queues. Our main result states that a graph is a deque graph if and only if it has a plane linear cylindric drawing.
35#
發(fā)表于 2025-3-27 14:54:30 | 只看該作者
36#
發(fā)表于 2025-3-27 17:52:51 | 只看該作者
37#
發(fā)表于 2025-3-27 23:30:06 | 只看該作者
Maximizing the Total Resolution of Graphs contribution of the paper consists of drawings of asymptotically optimal total resolution for complete graphs (circular drawings) and for complete bipartite graphs (2-layered drawings). In addition, we present and experimentally evaluate a force-directed based algorithm that constructs drawings of large total resolution.
38#
發(fā)表于 2025-3-28 06:08:47 | 只看該作者
39#
發(fā)表于 2025-3-28 08:46:43 | 只看該作者
On Graphs Supported by Line Setsby any set of parallel lines. On the negative side, we prove that no set of . lines that intersect in a common point supports all .-vertex planar graphs. Finally, we show that there exists a set of . lines in general position that does not support all .-vertex planar graphs.
40#
發(fā)表于 2025-3-28 10:43:58 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-10 23:18
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
新巴尔虎左旗| 剑河县| 清新县| 赤峰市| 泰和县| 峨眉山市| 综艺| 望江县| 叙永县| 延边| 济宁市| 嘉义市| 平阴县| 延长县| 玉屏| 时尚| 汉阴县| 遵义市| 新乡市| 望江县| 高雄县| 华亭县| 钟山县| 汉寿县| 舒城县| 二连浩特市| 太保市| 集安市| 阳江市| 卢龙县| 江津市| 阜城县| 翁源县| 河北区| 武平县| 西昌市| 方山县| 长垣县| 修水县| 贵阳市| 上思县|