找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: 惡夢
31#
發(fā)表于 2025-3-26 21:54:51 | 只看該作者
32#
發(fā)表于 2025-3-27 01:08:30 | 只看該作者
33#
發(fā)表于 2025-3-27 08:28:39 | 只看該作者
Nanofabrication by Self-Assembly, contribution of the paper consists of drawings of asymptotically optimal total resolution for complete graphs (circular drawings) and for complete bipartite graphs (2-layered drawings). In addition, we present and experimentally evaluate a force-directed based algorithm that constructs drawings of large total resolution.
34#
發(fā)表于 2025-3-27 11:41:59 | 只看該作者
Imtiaz Ahmed,M. Fernando Gonzalez-Zalbaalization technique for queue and deque (double-ended queue) graphs. It provides new insights into the characteristics of these fundamental data structures and extends to the visualization of mixed layouts with stacks and queues. Our main result states that a graph is a deque graph if and only if it has a plane linear cylindric drawing.
35#
發(fā)表于 2025-3-27 14:54:30 | 只看該作者
36#
發(fā)表于 2025-3-27 17:52:51 | 只看該作者
37#
發(fā)表于 2025-3-27 23:30:06 | 只看該作者
Maximizing the Total Resolution of Graphs contribution of the paper consists of drawings of asymptotically optimal total resolution for complete graphs (circular drawings) and for complete bipartite graphs (2-layered drawings). In addition, we present and experimentally evaluate a force-directed based algorithm that constructs drawings of large total resolution.
38#
發(fā)表于 2025-3-28 06:08:47 | 只看該作者
39#
發(fā)表于 2025-3-28 08:46:43 | 只看該作者
On Graphs Supported by Line Setsby any set of parallel lines. On the negative side, we prove that no set of . lines that intersect in a common point supports all .-vertex planar graphs. Finally, we show that there exists a set of . lines in general position that does not support all .-vertex planar graphs.
40#
發(fā)表于 2025-3-28 10:43:58 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-10 23:18
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
龙海市| 加查县| 炉霍县| 新野县| 图们市| 荣昌县| 德惠市| 石棉县| 苍山县| 玉溪市| 武平县| 大理市| 句容市| 眉山市| 新巴尔虎左旗| 石门县| 新营市| 盐亭县| 天津市| 萝北县| 册亨县| 日喀则市| 昆山市| 皋兰县| 平和县| 北安市| 婺源县| 友谊县| 临海市| 陵川县| 依兰县| 罗城| 兰溪市| 如皋市| 宝山区| 喜德县| 江西省| 西昌市| 梁河县| 调兵山市| 马公市|