找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
查看: 48504|回復: 40
樓主
發(fā)表于 2025-3-21 19:32:29 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Granular Computing Based Machine Learning
編輯Han Liu,Mihaela Cocea
視頻videohttp://file.papertrans.cn/388/387855/387855.mp4
叢書名稱Studies in Big Data
圖書封面Titlebook: ;
出版日期Book 2018
版次1
doihttps://doi.org/10.1007/978-3-319-70058-8
isbn_softcover978-3-319-88884-2
isbn_ebook978-3-319-70058-8Series ISSN 2197-6503 Series E-ISSN 2197-6511
issn_series 2197-6503
The information of publication is updating

書目名稱Granular Computing Based Machine Learning影響因子(影響力)




書目名稱Granular Computing Based Machine Learning影響因子(影響力)學科排名




書目名稱Granular Computing Based Machine Learning網(wǎng)絡公開度




書目名稱Granular Computing Based Machine Learning網(wǎng)絡公開度學科排名




書目名稱Granular Computing Based Machine Learning被引頻次




書目名稱Granular Computing Based Machine Learning被引頻次學科排名




書目名稱Granular Computing Based Machine Learning年度引用




書目名稱Granular Computing Based Machine Learning年度引用學科排名




書目名稱Granular Computing Based Machine Learning讀者反饋




書目名稱Granular Computing Based Machine Learning讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:00:45 | 只看該作者
Conclusion,granular computing based machine learning is inspired philosophically from real-life examples. Moreover, we suggest some further directions to extend the current research towards advancing machine learning in the future.
板凳
發(fā)表于 2025-3-22 03:51:27 | 只看該作者
Granular Computing Based Machine Learning978-3-319-70058-8Series ISSN 2197-6503 Series E-ISSN 2197-6511
地板
發(fā)表于 2025-3-22 07:14:15 | 只看該作者
https://doi.org/10.1007/978-3-658-40438-3ncepts of traditional data science are then explored to show the value of data. Furthermore, the concepts of machine learning and granular computing are provided in the context of intelligent data processing. Finally, the main contents of each of the following chapters are outlined.
5#
發(fā)表于 2025-3-22 10:57:15 | 只看該作者
Metaverse: Concept, Content and Contexttic learning, discriminative learning, single-task learning and random data partitioning. We also identify general issues of traditional machine learning, and discuss how traditional learning approaches can be impacted due to the presence of big data.
6#
發(fā)表于 2025-3-22 13:57:55 | 只看該作者
7#
發(fā)表于 2025-3-22 18:56:35 | 只看該作者
8#
發(fā)表于 2025-3-23 00:42:32 | 只看該作者
9#
發(fā)表于 2025-3-23 04:28:13 | 只看該作者
Peter Clark,Martin Best,Aurore Porsonf veracity and variability, respectively. In the sentiment analysis case study, we show the performance of fuzzy approaches on movie reviews data, in comparison with other commonly used non-fuzzy approaches.
10#
發(fā)表于 2025-3-23 07:35:22 | 只看該作者
Introduction,ncepts of traditional data science are then explored to show the value of data. Furthermore, the concepts of machine learning and granular computing are provided in the context of intelligent data processing. Finally, the main contents of each of the following chapters are outlined.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
吉首市| 宝兴县| 南丹县| 奉节县| 乌拉特前旗| 会泽县| 沂南县| 乳山市| 沽源县| 原阳县| 伊宁市| 景泰县| 江西省| 固阳县| 南昌市| 玉林市| 清镇市| 城固县| 西畴县| 蒲江县| 桓台县| 天门市| 仲巴县| 韶山市| 东兰县| 静乐县| 特克斯县| 文水县| 赤水市| 巴林右旗| 民和| 百色市| 大渡口区| 图们市| 陕西省| 临高县| 江山市| 青州市| 花莲县| 汤阴县| 拉孜县|