找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 到凝乳
41#
發(fā)表于 2025-3-28 15:40:03 | 只看該作者
42#
發(fā)表于 2025-3-28 19:13:30 | 只看該作者
On Learning Regular Expressions and Patterns Via Membership and Correction Queriesuery, the oracle, in the case of negative answer, returns also a . – a positive datum (that has not been seen in the learning process yet) with the smallest edit distance from the queried string. Polynomial-time algorithms for learning a class of regular expressions from one such query and membershi
43#
發(fā)表于 2025-3-29 00:02:13 | 只看該作者
State-Merging DFA Induction Algorithms with Mandatory Merge ConstraintsIn particular, the negative information prevents merging incompatible states: merging those states would lead to produce an inconsistent DFA. Whenever available, domain knowledge can also be used to extend the set of incompatible states. We introduce here mandatory merge constraints, which form the
44#
發(fā)表于 2025-3-29 06:02:45 | 只看該作者
45#
發(fā)表于 2025-3-29 10:41:18 | 只看該作者
Towards Feasible PAC-Learning of Probabilistic Deterministic Finite Automatated by Probabilistic Deterministic Finite Automata (PDFA). Our algorithm is an attempt to keep the rigorous guarantees of the original one but use sample sizes that are not as astronomical as predicted by the theory. We prove that indeed our algorithm PAC-learns in a stronger sense than the Clark-Th
46#
發(fā)表于 2025-3-29 13:18:22 | 只看該作者
47#
發(fā)表于 2025-3-29 15:47:52 | 只看該作者
48#
發(fā)表于 2025-3-29 22:11:48 | 只看該作者
How to Split Recursive Automatarammars to learn subclasses of context-free languages. The algorithms considered implement .. This new perspective also helps to understand how it is possible to control the combinatorial explosion that specialization techniques have to face, thanks to a typing approach.
49#
發(fā)表于 2025-3-30 02:33:17 | 只看該作者
50#
發(fā)表于 2025-3-30 07:09:53 | 只看該作者
Unsupervised Learning of Probabilistic Context-Free Grammar using Iterative Biclusteringcquires rules of an unknown PCFG through iterative biclustering of bigrams in the training corpus. Our analysis shows that this procedure uses a greedy approach to adding rules such that each set of rules that is added to the grammar results in the largest increase in the posterior of the grammar gi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 21:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巫溪县| 大新县| 宁国市| 揭东县| 蓬莱市| 贺州市| 博野县| 增城市| 嵩明县| 文安县| 盖州市| 苏尼特左旗| 靖安县| 益阳市| 建阳市| 绥芬河市| 曲松县| 合阳县| 大邑县| 乐业县| 周宁县| 宽甸| 双柏县| 泊头市| 沙河市| 岳池县| 淮安市| 安阳县| 区。| 绍兴县| 大荔县| 和静县| 新兴县| 叙永县| 商南县| 蛟河市| 徐汇区| 化德县| 栾城县| 霍州市| 文成县|