找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 到凝乳
41#
發(fā)表于 2025-3-28 15:40:03 | 只看該作者
42#
發(fā)表于 2025-3-28 19:13:30 | 只看該作者
On Learning Regular Expressions and Patterns Via Membership and Correction Queriesuery, the oracle, in the case of negative answer, returns also a . – a positive datum (that has not been seen in the learning process yet) with the smallest edit distance from the queried string. Polynomial-time algorithms for learning a class of regular expressions from one such query and membershi
43#
發(fā)表于 2025-3-29 00:02:13 | 只看該作者
State-Merging DFA Induction Algorithms with Mandatory Merge ConstraintsIn particular, the negative information prevents merging incompatible states: merging those states would lead to produce an inconsistent DFA. Whenever available, domain knowledge can also be used to extend the set of incompatible states. We introduce here mandatory merge constraints, which form the
44#
發(fā)表于 2025-3-29 06:02:45 | 只看該作者
45#
發(fā)表于 2025-3-29 10:41:18 | 只看該作者
Towards Feasible PAC-Learning of Probabilistic Deterministic Finite Automatated by Probabilistic Deterministic Finite Automata (PDFA). Our algorithm is an attempt to keep the rigorous guarantees of the original one but use sample sizes that are not as astronomical as predicted by the theory. We prove that indeed our algorithm PAC-learns in a stronger sense than the Clark-Th
46#
發(fā)表于 2025-3-29 13:18:22 | 只看該作者
47#
發(fā)表于 2025-3-29 15:47:52 | 只看該作者
48#
發(fā)表于 2025-3-29 22:11:48 | 只看該作者
How to Split Recursive Automatarammars to learn subclasses of context-free languages. The algorithms considered implement .. This new perspective also helps to understand how it is possible to control the combinatorial explosion that specialization techniques have to face, thanks to a typing approach.
49#
發(fā)表于 2025-3-30 02:33:17 | 只看該作者
50#
發(fā)表于 2025-3-30 07:09:53 | 只看該作者
Unsupervised Learning of Probabilistic Context-Free Grammar using Iterative Biclusteringcquires rules of an unknown PCFG through iterative biclustering of bigrams in the training corpus. Our analysis shows that this procedure uses a greedy approach to adding rules such that each set of rules that is added to the grammar results in the largest increase in the posterior of the grammar gi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
都匀市| 灵宝市| 子洲县| 安吉县| 洱源县| 浮山县| 南阳市| 桐城市| 蒙阴县| 随州市| 岱山县| 邵阳市| 鄂托克前旗| 赤壁市| 兴安盟| 腾冲县| 淮南市| 汽车| 东安县| 乌海市| 武清区| 白银市| 黄大仙区| 鹿泉市| 广南县| 林口县| 罗源县| 宁强县| 闻喜县| 琼结县| 阿巴嘎旗| 库车县| 永德县| 镇康县| 瓮安县| 抚松县| 马关县| 武城县| 沙田区| 治县。| 波密县|