找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: APL
11#
發(fā)表于 2025-3-23 10:03:00 | 只看該作者
Inducing probabilistic grammars by Bayesian model merging, between a close fit to the data and a default preference for simpler models (‘Occam‘s Razor’). The general scheme is illustrated using three types of probabilistic grammars: Hidden Markov models, class-based .-grams, and stochastic context-free grammars.
12#
發(fā)表于 2025-3-23 16:51:01 | 只看該作者
13#
發(fā)表于 2025-3-23 21:26:56 | 只看該作者
14#
發(fā)表于 2025-3-24 00:52:00 | 只看該作者
Inference and estimation of a long-range trigram model, This results in significant savings in computation time, and is applicable to the training of a general probabilistic link grammar. Results of preliminary experiments carried out for this class of models are presented.
15#
發(fā)表于 2025-3-24 04:13:48 | 只看該作者
16#
發(fā)表于 2025-3-24 09:42:45 | 只看該作者
What is the search space of the regular inference?,l properties of the search space are studied and generalization criteria are discussed. In this framework, the concept of . is introduced, that is the set of the most general solutions excluding a negative sample. Finally, the complexity of regular language identification from both a theoritical and a practical point of view is discussed.
17#
發(fā)表于 2025-3-24 13:52:59 | 只看該作者
Application of OSTIA to machine translation tasks,d English-to-German translations have been generated, and exhaustive experiments have been carried out to test the ability of OSTIA to learn these translations. The success of the results show the usefulness of formal learning techniques in limited-domain Machine Translation tasks.
18#
發(fā)表于 2025-3-24 14:52:06 | 只看該作者
A comparison of syntactic and statistical techniques for off-line OCR,very simplistic and idiosyncratic input coding, the syntactic method performs slightly better than any of the other methods. Furthermore, it is likely that the syntactic method could significantly outperform the other methods given a less idiosyncratic input coding.
19#
發(fā)表于 2025-3-24 20:29:53 | 只看該作者
20#
發(fā)表于 2025-3-25 01:48:17 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
呼伦贝尔市| 清新县| 濮阳市| 军事| 泾源县| 崇左市| 江口县| 安义县| 嘉禾县| 丹寨县| 万安县| 青州市| 怀集县| 金乡县| 津南区| 康乐县| 图木舒克市| 浙江省| 科技| 延安市| 华阴市| 秦安县| 叶城县| 长宁县| 仲巴县| 武鸣县| 油尖旺区| 鲁山县| 丰镇市| 绿春县| 盐池县| 教育| 文成县| 沙坪坝区| 鹿泉市| 肥乡县| 崇明县| 永城市| 古丈县| 双牌县| 澄江县|