找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Goldbach’s Problem; Selected Topics Michael Th. Rassias Book 2017 Springer International Publishing AG 2017 Goldbach’s conjecture.Hardy-Li

[復(fù)制鏈接]
查看: 8889|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:17:08 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Goldbach’s Problem
副標(biāo)題Selected Topics
編輯Michael Th. Rassias
視頻videohttp://file.papertrans.cn/388/387317/387317.mp4
概述Features a step-by-step presentation of results of Goldbach‘s conjecture.Accessible to those that have mastered classical number theory and fundamental notions of mathematical analysis.Equips readers
圖書(shū)封面Titlebook: Goldbach’s Problem; Selected Topics Michael Th. Rassias Book 2017 Springer International Publishing AG 2017 Goldbach’s  conjecture.Hardy-Li
描述.Important results surrounding the proof of Goldbach‘s ternary conjecture are presented in this book. Beginning with an historical perspective along with an overview of essential lemmas and theorems, this monograph moves on to a detailed proof of Vinogradov‘s theorem. The principles of the Hardy-Littlewood circle method are outlined and applied to Goldbach‘s ternary conjecture. New results due to H. Maier and the author on Vinogradov‘s theorem are proved under the assumption of the Riemann hypothesis. The final chapter discusses an approach to Goldbach‘s conjecture through theorems by L. G. Schnirelmann. This book concludes with an Appendix featuring a sketch of H. Helfgott‘s proof of Goldbach‘s ternary conjecture. The Appendix also presents some biographical remarks of mathematicians whose research has played a seminal role on the Goldbach ternary problem. .?The author‘s step-by-step approach makes this book accessible to those that have mastered classical number theory and fundamental notions of mathematical analysis. This book will be particularly useful to graduate students and mathematicians in analytic number theory, approximation theory as well as to researchers working on G
出版日期Book 2017
關(guān)鍵詞Goldbach’s conjecture; Hardy-Littlewood circle method; Prime Number Theorem; Vaughan’s proof; Vinogrado
版次1
doihttps://doi.org/10.1007/978-3-319-57914-6
isbn_softcover978-3-319-57912-2
isbn_ebook978-3-319-57914-6
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書(shū)目名稱(chēng)Goldbach’s Problem影響因子(影響力)




書(shū)目名稱(chēng)Goldbach’s Problem影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Goldbach’s Problem網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Goldbach’s Problem網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Goldbach’s Problem被引頻次




書(shū)目名稱(chēng)Goldbach’s Problem被引頻次學(xué)科排名




書(shū)目名稱(chēng)Goldbach’s Problem年度引用




書(shū)目名稱(chēng)Goldbach’s Problem年度引用學(xué)科排名




書(shū)目名稱(chēng)Goldbach’s Problem讀者反饋




書(shū)目名稱(chēng)Goldbach’s Problem讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:39:52 | 只看該作者
https://doi.org/10.1007/978-3-319-57914-6Goldbach’s conjecture; Hardy-Littlewood circle method; Prime Number Theorem; Vaughan’s proof; Vinogrado
板凳
發(fā)表于 2025-3-22 01:34:21 | 只看該作者
地板
發(fā)表于 2025-3-22 08:32:07 | 只看該作者
5#
發(fā)表于 2025-3-22 09:19:57 | 只看該作者
https://doi.org/10.1007/978-3-031-32935-7In the first section, we begin with some lemmas and theorems which will be useful in presenting a step-by-step proof of Vinogradov’s theorem, which states that there exists a natural number ., such that every odd positive integer ., with ., can be represented as the sum of three prime numbers. The experienced reader may wish to skip this section.
6#
發(fā)表于 2025-3-22 13:58:26 | 只看該作者
,Link design — electronic considerations,In this chapter, we present the result of H. Maier and M. Th. Rassias [37] that under the assumption of the Generalized Riemann Hypothesis each sufficiently large odd integer can be expressed as the sum of a prime and two isolated primes.
7#
發(fā)表于 2025-3-22 19:33:50 | 只看該作者
Ray A. Waller,Vincent T. CovelloIn this chapter we provide an outline of the proof of Schnirelmann’s theorem which states that there exists a positive integer ., such that every integer greater than 1 can be represented as the sum of at most . prime numbers.
8#
發(fā)表于 2025-3-22 23:07:35 | 只看該作者
Introduction,In 1742 C. Goldbach, in two letters sent to L. Euler, formulated two conjectures. The first conjecture stated that every even integer can be represented as the sum of two prime numbers, and the second one, that every integer greater than 2 can be represented as the sum of three prime numbers.
9#
發(fā)表于 2025-3-23 04:21:11 | 只看該作者
,Step-by-Step Proof of Vinogradov’s Theorem,In the first section, we begin with some lemmas and theorems which will be useful in presenting a step-by-step proof of Vinogradov’s theorem, which states that there exists a natural number ., such that every odd positive integer ., with ., can be represented as the sum of three prime numbers. The experienced reader may wish to skip this section.
10#
發(fā)表于 2025-3-23 08:16:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 02:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆林| 玉田县| 亚东县| 青海省| 嘉善县| 孟州市| 庆阳市| 大埔区| 邹城市| 清丰县| 客服| 镇沅| 察雅县| 云林县| 基隆市| 河曲县| 桑日县| 彭山县| 济南市| 南昌县| 孟州市| 信阳市| 呼伦贝尔市| 徐闻县| 定西市| 吉林省| 黄大仙区| 交城县| 涞源县| 灵石县| 双流县| 秭归县| 潞城市| 扶风县| 新宁县| 富源县| 达州市| 广水市| 七台河市| 葵青区| 惠安县|