找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Stability of Dynamical Systems; Michael Shub Book 1987 Springer-Verlag Berlin Heidelberg 1987 dynamical systems.manifold.stability

[復(fù)制鏈接]
樓主: False-Negative
11#
發(fā)表于 2025-3-23 11:09:37 | 只看該作者
The Moral Crisis in Special Education,We have begun to study hyperbolic invariant sets. Before we continue we must generalize our definitions in the case of a fixed point, to allow us to work in an arbitrary Banach space.
12#
發(fā)表于 2025-3-23 14:56:25 | 只看該作者
https://doi.org/10.1007/978-3-031-29735-9Next, we will generalize to more complicated hyperbolic sets, such as the horseshoe or a solenoid, the theory we have developed for a periodic point.
13#
發(fā)表于 2025-3-23 19:52:40 | 只看該作者
https://doi.org/10.1007/978-1-137-45665-6Consider two submanifolds . and . of . which intersect at a point .. We say that . and . are transverse at ., ..., or that . is a . of . and ., if ..
14#
發(fā)表于 2025-3-24 01:16:55 | 只看該作者
https://doi.org/10.1007/978-981-97-0009-7Let . and . be two topological spaces and .: . → . and .: . → . two continuous maps.
15#
發(fā)表于 2025-3-24 03:30:36 | 只看該作者
16#
發(fā)表于 2025-3-24 09:54:33 | 只看該作者
,Sexual Betrayal in “Penelope”,Our last major result will be counting the periodic points in a hyperbolic set with local product structure; we will carry this out using the important technique of symbolic dynamics.
17#
發(fā)表于 2025-3-24 13:07:29 | 只看該作者
18#
發(fā)表于 2025-3-24 16:26:39 | 只看該作者
Sequences of Filtrations,Let .: ?=.. ? ··· ? .., = M and .: ?=.. ? ··· ? .. = . be two filtrations of .. We say that . refines . if and only if for all . = 0,..., . ? 1, there is a ., 0 ≤ . ≤ . ? 1 such that (... ? ..) ? (... ? ..).
19#
發(fā)表于 2025-3-24 20:48:07 | 只看該作者
20#
發(fā)表于 2025-3-25 01:29:56 | 只看該作者
Stable Manifolds,We have begun to study hyperbolic invariant sets. Before we continue we must generalize our definitions in the case of a fixed point, to allow us to work in an arbitrary Banach space.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
正定县| 木里| 河西区| 高淳县| 青浦区| 鹰潭市| 谷城县| 曲阜市| 高碑店市| 武川县| 崇义县| 新绛县| 师宗县| 久治县| 启东市| 仪陇县| 同江市| 青川县| 宣化县| 绍兴市| 宣恩县| 竹北市| 龙南县| 东莞市| 顺义区| 威远县| 南投市| 岳普湖县| 武定县| 宁陕县| 元朗区| 阿拉善右旗| 忻州市| 长治市| 博爱县| 惠来县| 白玉县| 安西县| 闸北区| 翁牛特旗| 成都市|