找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Optimization; Deterministic Approa Reiner Horst,Hoang Tuy Book 19901st edition Springer-Verlag Berlin Heidelberg 1990 Decision Theor

[復制鏈接]
樓主: 氣泡
11#
發(fā)表于 2025-3-23 10:29:54 | 只看該作者
12#
發(fā)表于 2025-3-23 17:18:19 | 只看該作者
13#
發(fā)表于 2025-3-23 22:03:09 | 只看該作者
Elavarasi Pichai,Mageshwaran LakshmananA widely used method to solve various kinds of difficult optimization problems is called branch and bound. In this technique, the feasible set is relaxed and subsequently split into parts (branching) over which lower (and often also upper) bounds of the objective function value can be determined (bounding).
14#
發(fā)表于 2025-3-24 01:34:59 | 只看該作者
15#
發(fā)表于 2025-3-24 04:50:07 | 只看該作者
16#
發(fā)表于 2025-3-24 10:18:40 | 只看該作者
17#
發(fā)表于 2025-3-24 14:04:41 | 只看該作者
Outer ApproximationOuter approximation of the feasible set by a sequence of simpler relaxed sets is a basic method in many fields of optimization. In this technique, the current approximating set is improved by a suitable additional constraint (a cut).
18#
發(fā)表于 2025-3-24 18:30:19 | 只看該作者
Branch and BoundA widely used method to solve various kinds of difficult optimization problems is called branch and bound. In this technique, the feasible set is relaxed and subsequently split into parts (branching) over which lower (and often also upper) bounds of the objective function value can be determined (bounding).
19#
發(fā)表于 2025-3-24 20:59:33 | 只看該作者
Cutting MethodsIn this chapter we discuss some basic cutting plane methods for concave minimization. These include concavity cuts and related cuts, facial cuts, cut and split procedures and a discussion of how to generate deep cuts. The important special case of concave quadratic objective functions is treated in some detail.
20#
發(fā)表于 2025-3-25 02:08:48 | 只看該作者
Successive Approximation MethodsIn the cutting plane methods discussed in the previous chapter, the feasible domain is reduced at each step by cutting off a feasible portion that is known to contain no better solution than the current best solution.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 08:30
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
微山县| 溧阳市| 和顺县| 聂拉木县| 正定县| 道真| 赤城县| 德昌县| 嘉兴市| 洪雅县| 当涂县| 五河县| 内江市| 库伦旗| 应城市| 绥德县| 阜新市| 安宁市| 金沙县| 新平| 新干县| 铜山县| 怀安县| 通榆县| 米脂县| 寿光市| 历史| 五家渠市| 嫩江县| 元谋县| 咸阳市| 睢宁县| 毕节市| 民和| 东宁县| 深州市| 延庆县| 荆州市| 乐清市| 阳城县| 正宁县|