找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds; A Geometric Approach Taeyoung Lee,Melvin Leok,N. Harris McClamroch

[復(fù)制鏈接]
查看: 28074|回復(fù): 41
樓主
發(fā)表于 2025-3-21 18:50:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds
副標(biāo)題A Geometric Approach
編輯Taeyoung Lee,Melvin Leok,N. Harris McClamroch
視頻videohttp://file.papertrans.cn/387/386275/386275.mp4
概述Accessible to a broad audience of scientists and engineers.Non-trivial applications worked out in detail, allowing reader to easily apply techniques to real-world problems.Includes exercises at the en
叢書名稱Interaction of Mechanics and Mathematics
圖書封面Titlebook: Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds; A Geometric Approach Taeyoung Lee,Melvin Leok,N. Harris McClamroch
描述.This book provides an accessible introduction to the variational formulation of Lagrangian and Hamiltonian mechanics, with a novel emphasis on global descriptions of the dynamics, which is a significant conceptual departure from more traditional approaches based on the use of local coordinates on the configuration manifold. In particular, we introduce a general methodology for obtaining globally valid equations of motion on configuration manifolds that are Lie groups, homogeneous spaces, and embedded manifolds, thereby avoiding the difficulties associated with coordinate singularities...The material is presented in an approachable fashion by considering concrete configuration manifolds of increasing complexity, which then motivates and naturally leads to the more general formulation that follows. Understanding of the material is enhanced by numerous in-depth examples throughout the book, culminating in non-trivial applications involving multi-body systems...This book is written for a general audience of mathematicians, engineers, and physicists with a basic knowledge of mechanics. Some basic background in differential geometry is helpful, but not essential, as the relevant concept
出版日期Textbook 2018
關(guān)鍵詞Geometric Mechanics; Lagrangian Systems; Hamiltonian Systems; Manifold; Lie Groups; Dynamics; Mechanics; Mu
版次1
doihttps://doi.org/10.1007/978-3-319-56953-6
isbn_softcover978-3-319-56951-2
isbn_ebook978-3-319-56953-6Series ISSN 1860-6245 Series E-ISSN 1860-6253
issn_series 1860-6245
copyrightSpringer International Publishing AG 2018
The information of publication is updating

書目名稱Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds影響因子(影響力)




書目名稱Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds影響因子(影響力)學(xué)科排名




書目名稱Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds網(wǎng)絡(luò)公開度




書目名稱Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds被引頻次




書目名稱Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds被引頻次學(xué)科排名




書目名稱Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds年度引用




書目名稱Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds年度引用學(xué)科排名




書目名稱Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds讀者反饋




書目名稱Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:16:50 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:01:28 | 只看該作者
地板
發(fā)表于 2025-3-22 05:45:16 | 只看該作者
Lagrangian and Hamiltonian Dynamics on Manifolds,his includes the assumption that the configuration manifold is a Lie group or a homogeneous space. In all cases, Euler–Lagrange equations and Hamilton’s equations are derived using variational arguments.
5#
發(fā)表于 2025-3-22 10:52:01 | 只看該作者
Rigid and Multi-Body Systems,n manifold is identified, and a Lagrangian function is obtained, using physical principles, that is defined on the tangent bundle of the configuration manifold. Variational methods are used to derive Euler–Lagrange equations and Hamilton’s equations. Special features of the dynamics are studied.
6#
發(fā)表于 2025-3-22 13:42:44 | 只看該作者
Deformable Multi-Body Systems,te-dimensional configuration manifold is identified, and a Lagrangian function is obtained, using physical principles, that is defined on the tangent bundle of the configuration manifold. Variational methods are used to derive Euler–Lagrange equations and Hamilton’s equations. Special features of th
7#
發(fā)表于 2025-3-22 19:57:56 | 只看該作者
Taeyoung Lee,Melvin Leok,N. Harris McClamrochAccessible to a broad audience of scientists and engineers.Non-trivial applications worked out in detail, allowing reader to easily apply techniques to real-world problems.Includes exercises at the en
8#
發(fā)表于 2025-3-22 23:20:17 | 只看該作者
9#
發(fā)表于 2025-3-23 02:50:19 | 只看該作者
Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds978-3-319-56953-6Series ISSN 1860-6245 Series E-ISSN 1860-6253
10#
發(fā)表于 2025-3-23 06:13:11 | 只看該作者
,, — Variants of a Scalar Adverb in German,his includes the assumption that the configuration manifold is a Lie group or a homogeneous space. In all cases, Euler–Lagrange equations and Hamilton’s equations are derived using variational arguments.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
深泽县| 淮滨县| 微博| 淮安市| 万年县| 寻甸| 凤山县| 余姚市| 剑阁县| 樟树市| 嘉兴市| 隆昌县| 屯昌县| 萨嘎县| 天门市| 佛山市| 迭部县| 卓尼县| 教育| 阳高县| 崇义县| 靖安县| 五台县| 鹤庆县| 盈江县| 芜湖县| 瑞安市| 嵩明县| 湖南省| 连南| 元阳县| 开封市| 曲周县| 梓潼县| 遵义市| 灌云县| 明溪县| 凤翔县| 平乡县| 胶州市| 红桥区|