找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Existence and Uniqueness of Nonlinear Evolutionary Fluid Equations; Yuming Qin,Xin Liu,Taige Wang Book 2015 Springer Basel 2015 Com

[復(fù)制鏈接]
樓主: Truman
21#
發(fā)表于 2025-3-25 06:59:45 | 只看該作者
https://doi.org/10.1007/3-540-32743-6In this chapter, we shall consider the one-dimensional thermally radiative fluid with magnetic diffusion.
22#
發(fā)表于 2025-3-25 07:30:18 | 只看該作者
Rechenstrukturen und AlgorithmenIn this chapter we are concerned with the free-boundary problem describing the motion of a compressible, viscous and heat-conducting gas which is self-gravitating, radiative and chemically reactive.
23#
發(fā)表于 2025-3-25 12:51:01 | 只看該作者
24#
發(fā)表于 2025-3-25 16:28:50 | 只看該作者
überwachung von BakterienkulturenIn this chapter, we shall prove the global existence and exponential stability of solutions to the following full non-Newtonian fluid model.
25#
發(fā)表于 2025-3-25 23:26:53 | 只看該作者
Global Existence and Exponential Stability of 1D Compressible and Radiative Magnetohydrodynamic FloIn this chapter, we shall study the global existence and exponential stability of solutions to the one-dimensional thermally-radiative magnetohydrodynamic equations.
26#
發(fā)表于 2025-3-26 01:31:26 | 只看該作者
Global Smooth Solutions for 1D Thermally Radiative Magnetohydrodynamics with Self-gravitation,In this chapter, we shall consider the one-dimensional thermally radiative fluid with magnetic diffusion.
27#
發(fā)表于 2025-3-26 06:34:00 | 只看該作者
28#
發(fā)表于 2025-3-26 10:07:50 | 只看該作者
The Cauchy Problem for a 1D Compressible Viscous Micropolar Fluid Model,In this chapter, we shall study the global existence and large-time behavior of ..-global solutions (. = 1, 2, 4) to a kind of Navier-Stokes equations for a onedimensional compressible viscous heat-conducting micropolar fluid, which is assumed to be thermodynamically perfect and polytropic.
29#
發(fā)表于 2025-3-26 15:29:26 | 只看該作者
30#
發(fā)表于 2025-3-26 16:49:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 09:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇礼县| 汝阳县| 临沂市| 斗六市| 宁武县| 大理市| 嘉义市| 克什克腾旗| 德令哈市| 乳山市| 青州市| 云龙县| 宜宾市| 绵阳市| 福鼎市| 上饶县| 宁武县| 阆中市| 乌拉特后旗| 当阳市| 饶河县| 玛纳斯县| 仲巴县| 阳朔县| 舟山市| 扶风县| 固始县| 锡林郭勒盟| 广西| 舟山市| 自贡市| 甘肃省| 明水县| 嘉鱼县| 濮阳县| 内江市| 宁陵县| 大丰市| 义马市| 濉溪县| 商都县|