找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Differential Geometry and Global Analysis; Proceedings of a Con Dirk Ferus,Ulrich Pinkall,Berd Wegner Conference proceedings 1991 Sp

[復制鏈接]
樓主: 誤解
11#
發(fā)表于 2025-3-23 10:54:10 | 只看該作者
12#
發(fā)表于 2025-3-23 14:11:59 | 只看該作者
A maximum principle at infinity and the topology of complete embedded surfaces with constant mean c
13#
發(fā)表于 2025-3-23 21:15:03 | 只看該作者
On Submanifolds with parallel higher order fundamental form in euclidean spaces,
14#
發(fā)表于 2025-3-24 00:33:59 | 只看該作者
15#
發(fā)表于 2025-3-24 04:54:48 | 只看該作者
Transversal curvature and tautness for riemannian foliations,
16#
發(fā)表于 2025-3-24 08:02:46 | 只看該作者
,Schr?dinger operators associated to a holomorphic map,
17#
發(fā)表于 2025-3-24 12:25:41 | 只看該作者
Generic existence of morse functions on infinite dimensional riemannian manifolds and applications,
18#
發(fā)表于 2025-3-24 15:43:22 | 只看該作者
The spectral geometry of the laplacian and the conformal laplacian for manifolds with boundary,th Dirichlet and Robin boundary conditions. We show in §1 geometric properties of the boundary such as totally geodesic boundary, constant mean curvature, and totally umbillic are spectrally determined. In §2, we expand the invariants of the heat equation on a small geodesic ball in a power series i
19#
發(fā)表于 2025-3-24 20:19:41 | 只看該作者
20#
發(fā)表于 2025-3-25 02:34:43 | 只看該作者
Going Whaling and a Hint of Ahab,n the radius. We characterize Einstein, conformally flat, and constant sectional curvature manifolds by the spectral geometry of their geodesic balls. Also, some characterizations are obtained for the rank 1 symmetric spaces .., .., .., .. and their noncompact duals. MOS subject classification: 58G25
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 06:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
化德县| 福鼎市| 桑日县| 南和县| 南通市| 榆树市| 马公市| 承德市| 黄骅市| 海城市| 嘉黎县| 双牌县| 洞口县| 枣阳市| 三门县| 瑞丽市| 虹口区| 锦屏县| 西昌市| 孝昌县| 洞口县| 慈溪市| 甘孜县| 宣汉县| 当涂县| 武定县| 正定县| 昂仁县| 抚远县| 井冈山市| 凤山市| 盐津县| 河东区| 琼中| 密山市| 南城县| 扶余县| 九江县| 荆州市| 从化市| 呼伦贝尔市|