找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Differential Geometry; Christian B?r,Joachim Lohkamp,Matthias Schwarz Conference proceedings 2012 Springer-Verlag Berlin Heidelberg

[復制鏈接]
查看: 42406|回復: 56
樓主
發(fā)表于 2025-3-21 18:59:33 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Global Differential Geometry
編輯Christian B?r,Joachim Lohkamp,Matthias Schwarz
視頻videohttp://file.papertrans.cn/387/386186/386186.mp4
概述Gives access to most recent developments in Global Differential Geometry.Written by experts in their field.Also suitable for graduate students and researchers with a general background in geometry.Inc
叢書名稱Springer Proceedings in Mathematics
圖書封面Titlebook: Global Differential Geometry;  Christian B?r,Joachim Lohkamp,Matthias Schwarz Conference proceedings 2012 Springer-Verlag Berlin Heidelberg
描述This volume contains a collection of well-written surveys provided by experts in Global Differential Geometry to give an overview over recent developments in Riemannian Geometry, Geometric Analysis and Symplectic Geometry..The papers are written for graduate students and researchers with a general interest in geometry, who want to get acquainted with the current trends in these central fields of modern mathematics.
出版日期Conference proceedings 2012
關鍵詞Geometric Analysis; Riemannian Geometry; Symplectic Geometry
版次1
doihttps://doi.org/10.1007/978-3-642-22842-1
isbn_softcover978-3-642-43909-4
isbn_ebook978-3-642-22842-1Series ISSN 2190-5614 Series E-ISSN 2190-5622
issn_series 2190-5614
copyrightSpringer-Verlag Berlin Heidelberg 2012
The information of publication is updating

書目名稱Global Differential Geometry影響因子(影響力)




書目名稱Global Differential Geometry影響因子(影響力)學科排名




書目名稱Global Differential Geometry網(wǎng)絡公開度




書目名稱Global Differential Geometry網(wǎng)絡公開度學科排名




書目名稱Global Differential Geometry被引頻次




書目名稱Global Differential Geometry被引頻次學科排名




書目名稱Global Differential Geometry年度引用




書目名稱Global Differential Geometry年度引用學科排名




書目名稱Global Differential Geometry讀者反饋




書目名稱Global Differential Geometry讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:12:40 | 只看該作者
Some Curvature Problems in Semi-Riemannian Geometry
板凳
發(fā)表于 2025-3-22 03:41:02 | 只看該作者
地板
發(fā)表于 2025-3-22 07:22:04 | 只看該作者
Positive Scalar Curvature, K-area and Essentialness
5#
發(fā)表于 2025-3-22 10:10:35 | 只看該作者
Classical and Quantum Fields on Lorentzian Manifolds
6#
發(fā)表于 2025-3-22 12:54:17 | 只看該作者
7#
發(fā)表于 2025-3-22 18:21:53 | 只看該作者
Conference proceedings 2012ents in Riemannian Geometry, Geometric Analysis and Symplectic Geometry..The papers are written for graduate students and researchers with a general interest in geometry, who want to get acquainted with the current trends in these central fields of modern mathematics.
8#
發(fā)表于 2025-3-22 21:18:21 | 只看該作者
2190-5614 ts and researchers with a general background in geometry.IncThis volume contains a collection of well-written surveys provided by experts in Global Differential Geometry to give an overview over recent developments in Riemannian Geometry, Geometric Analysis and Symplectic Geometry..The papers are wr
9#
發(fā)表于 2025-3-23 04:08:08 | 只看該作者
2190-5614 itten for graduate students and researchers with a general interest in geometry, who want to get acquainted with the current trends in these central fields of modern mathematics.978-3-642-43909-4978-3-642-22842-1Series ISSN 2190-5614 Series E-ISSN 2190-5622
10#
發(fā)表于 2025-3-23 09:37:24 | 只看該作者
978-3-642-43909-4Springer-Verlag Berlin Heidelberg 2012
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 14:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
改则县| 张北县| 通城县| 乐昌市| 茂名市| 梁平县| 闽侯县| 晴隆县| 凤庆县| 旅游| 淳安县| 商南县| 平远县| 汾阳市| 甘洛县| 桃江县| 西和县| 嵊州市| 滁州市| 如皋市| 五原县| 马龙县| 吉安市| 岢岚县| 崇州市| 蓬莱市| 东乡| 吉水县| 罗甸县| 绥芬河市| 中西区| 弋阳县| 浑源县| 霸州市| 烟台市| 永城市| 德化县| 海淀区| 舟山市| 若尔盖县| 疏附县|