找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Aspects of Classical Integrable Systems; Richard H. Cushman,Larry M. Bates Book 19971st edition Springer Basel AG 1997 algebra.clas

[復(fù)制鏈接]
樓主: 烤問
11#
發(fā)表于 2025-3-23 11:03:22 | 只看該作者
12#
發(fā)表于 2025-3-23 16:03:28 | 只看該作者
The harmonic oscillator,Physically, the harmonic oscillator in the plane is described by a particle of unit mass acted upon by two linear springs of unit spring constant: one spring acting in the . -direction and the other in the .-direction.
13#
發(fā)表于 2025-3-23 21:28:26 | 只看該作者
The Euler Top,Mathematically, the motion of the Euler top is described by geodesics of a left invariant metric on the rotation group SO(3). Physically, the Euler top is a rigid body moving about its center of mass (which is fixed) without any forces acting on the body.
14#
發(fā)表于 2025-3-24 00:11:59 | 只看該作者
15#
發(fā)表于 2025-3-24 03:58:27 | 只看該作者
16#
發(fā)表于 2025-3-24 09:42:35 | 只看該作者
Human Rights and Free Trade in Mexicolyze. From the qualitative description of the reduced system we obtain a complete qualitative picture of the motion of the spherical pendulum. Because of monodromy, the Liouville tori fit together in a nontrivial way. This precludes the existence of global action coordinates, (see appendix D section 2).
17#
發(fā)表于 2025-3-24 11:18:44 | 只看該作者
The spherical pendulum,lyze. From the qualitative description of the reduced system we obtain a complete qualitative picture of the motion of the spherical pendulum. Because of monodromy, the Liouville tori fit together in a nontrivial way. This precludes the existence of global action coordinates, (see appendix D section 2).
18#
發(fā)表于 2025-3-24 18:03:50 | 只看該作者
Euler top, the spherical pendulum and the Lagrange top. These classical integrable Hamiltonian systems one sees treated in almost every physics book on classical mechanics. So why is this book necessary? The answer is that the standard treatments are not complete. For instance in physics books one c
19#
發(fā)表于 2025-3-24 19:41:17 | 只看該作者
20#
發(fā)表于 2025-3-25 01:29:41 | 只看該作者
is that their basic tool for removing symmetries of Hamiltonian systems, called regular reduction, is not general enough to handle removal of the symmetries which occur in the spherical pendulum or in the Lagrange top. For these symmetries one needs singular reduction. Another reason is that the obstructions 978-3-0348-9817-1978-3-0348-8891-2
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五寨县| 武强县| 汉阴县| 西乌珠穆沁旗| 楚雄市| 靖宇县| 马公市| 萨迦县| 临夏县| 大荔县| 银川市| 莱芜市| 景洪市| 陇川县| 龙川县| 毕节市| 康平县| 武威市| 洮南市| 北碚区| 和田市| 临洮县| 沙河市| 定陶县| 隆安县| 电白县| 朔州市| 高淳县| 广州市| 绥芬河市| 武安市| 柘城县| 中江县| 姚安县| 秦安县| 松桃| 阿荣旗| 神木县| 舒兰市| 视频| 小金县|