找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Aspects of Classical Integrable Systems; Richard H. Cushman,Larry M. Bates Book 19971st edition Springer Basel AG 1997 algebra.clas

[復(fù)制鏈接]
樓主: 烤問(wèn)
11#
發(fā)表于 2025-3-23 11:03:22 | 只看該作者
12#
發(fā)表于 2025-3-23 16:03:28 | 只看該作者
The harmonic oscillator,Physically, the harmonic oscillator in the plane is described by a particle of unit mass acted upon by two linear springs of unit spring constant: one spring acting in the . -direction and the other in the .-direction.
13#
發(fā)表于 2025-3-23 21:28:26 | 只看該作者
The Euler Top,Mathematically, the motion of the Euler top is described by geodesics of a left invariant metric on the rotation group SO(3). Physically, the Euler top is a rigid body moving about its center of mass (which is fixed) without any forces acting on the body.
14#
發(fā)表于 2025-3-24 00:11:59 | 只看該作者
15#
發(fā)表于 2025-3-24 03:58:27 | 只看該作者
16#
發(fā)表于 2025-3-24 09:42:35 | 只看該作者
Human Rights and Free Trade in Mexicolyze. From the qualitative description of the reduced system we obtain a complete qualitative picture of the motion of the spherical pendulum. Because of monodromy, the Liouville tori fit together in a nontrivial way. This precludes the existence of global action coordinates, (see appendix D section 2).
17#
發(fā)表于 2025-3-24 11:18:44 | 只看該作者
The spherical pendulum,lyze. From the qualitative description of the reduced system we obtain a complete qualitative picture of the motion of the spherical pendulum. Because of monodromy, the Liouville tori fit together in a nontrivial way. This precludes the existence of global action coordinates, (see appendix D section 2).
18#
發(fā)表于 2025-3-24 18:03:50 | 只看該作者
Euler top, the spherical pendulum and the Lagrange top. These classical integrable Hamiltonian systems one sees treated in almost every physics book on classical mechanics. So why is this book necessary? The answer is that the standard treatments are not complete. For instance in physics books one c
19#
發(fā)表于 2025-3-24 19:41:17 | 只看該作者
20#
發(fā)表于 2025-3-25 01:29:41 | 只看該作者
is that their basic tool for removing symmetries of Hamiltonian systems, called regular reduction, is not general enough to handle removal of the symmetries which occur in the spherical pendulum or in the Lagrange top. For these symmetries one needs singular reduction. Another reason is that the obstructions 978-3-0348-9817-1978-3-0348-8891-2
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海原县| 万全县| 太和县| 鄂州市| 禄劝| 老河口市| 榆社县| 五指山市| 六盘水市| 凤城市| 炎陵县| 嘉祥县| 江口县| 玉树县| 景谷| 巫溪县| 哈尔滨市| 中方县| 陈巴尔虎旗| 大庆市| 河东区| 航空| 丰顺县| 上栗县| 鹿泉市| 衡阳市| 志丹县| 治县。| 贞丰县| 石狮市| 玛沁县| 徐汇区| 新竹县| 抚顺县| 安多县| 资溪县| 西林县| 九龙城区| 新干县| 固镇县| 抚州市|