找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Aspects of Classical Integrable Systems; Richard H. Cushman,Larry M. Bates Book 2015Latest edition Springer Basel 2015 algebra.clas

[復制鏈接]
查看: 26070|回復: 52
樓主
發(fā)表于 2025-3-21 17:27:48 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Global Aspects of Classical Integrable Systems
編輯Richard H. Cushman,Larry M. Bates
視頻videohttp://file.papertrans.cn/387/386026/386026.mp4
概述This book gives a complete global geometric description of the motion of the two dimensional harmonic oscillator, the Kepler problem, the Euler top, the spherical pendulum and the Lagrange top.This bo
圖書封面Titlebook: Global Aspects of Classical Integrable Systems;  Richard H. Cushman,Larry M. Bates Book 2015Latest edition Springer Basel 2015 algebra.clas
描述This book gives a uniquely complete description of the geometry of the energy momentum mapping of five classical integrable systems: the 2-dimensional harmonic oscillator, the geodesic flow on the 3-sphere, the Euler top, the spherical pendulum and the Lagrange top. It presents for the first time in book form a general theory of symmetry reduction which allows one to reduce the symmetries in the spherical pendulum and the Lagrange top. Also the monodromy obstruction to the existence of global action angle coordinates is calculated for the spherical pendulum and the Lagrange top. The book addresses professional mathematicians and graduate students and can be used as a textbook on advanced classical mechanics or global analysis.
出版日期Book 2015Latest edition
關(guān)鍵詞algebra; classical mechanics; hamiltonian mechanics; manifold; pendulum
版次2
doihttps://doi.org/10.1007/978-3-0348-0918-4
isbn_ebook978-3-0348-0918-4
copyrightSpringer Basel 2015
The information of publication is updating

書目名稱Global Aspects of Classical Integrable Systems影響因子(影響力)




書目名稱Global Aspects of Classical Integrable Systems影響因子(影響力)學科排名




書目名稱Global Aspects of Classical Integrable Systems網(wǎng)絡公開度




書目名稱Global Aspects of Classical Integrable Systems網(wǎng)絡公開度學科排名




書目名稱Global Aspects of Classical Integrable Systems被引頻次




書目名稱Global Aspects of Classical Integrable Systems被引頻次學科排名




書目名稱Global Aspects of Classical Integrable Systems年度引用




書目名稱Global Aspects of Classical Integrable Systems年度引用學科排名




書目名稱Global Aspects of Classical Integrable Systems讀者反饋




書目名稱Global Aspects of Classical Integrable Systems讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:05:05 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:13:28 | 只看該作者
地板
發(fā)表于 2025-3-22 05:20:39 | 只看該作者
Basic Morse Theorye the Morse isotopy lemma which gives a criterion when two suitable level sets of a smooth function are diffeomorphic. We conclude the chapter by extending the notion of nondegenerate critical point to a nondegenerate critical submanifold.
5#
發(fā)表于 2025-3-22 10:39:04 | 只看該作者
6#
發(fā)表于 2025-3-22 13:15:44 | 只看該作者
Fundamental conceptsectic manifold, which is a Lie algebra under Poisson bracket, is made into an algebra using pointwise multiplication of smooth functions, we obtain a Poisson algebra. The symplectic formulation of mechanics can be recovered from this Poisson algebra.
7#
發(fā)表于 2025-3-22 17:59:32 | 只看該作者
8#
發(fā)表于 2025-3-22 23:48:56 | 只看該作者
9#
發(fā)表于 2025-3-23 03:27:12 | 只看該作者
Human Resources, Employment and Developmentverns the motion of two bodies in .. under gravitational attraction. We give two methods to regularize the flow of the Kepler vector field: one energy surface by energy surface and the other for all negative energies at once.
10#
發(fā)表于 2025-3-23 08:48:07 | 只看該作者
Context 1997–2003: History and Politicsly lifted to a horizontal curve in .. An Ehresmann connection is good if every smooth curve in . has a global horizontal lift. For good connections we define the notions of parallel translation and holonomy.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
甘孜县| 德阳市| 霍州市| 四川省| 兴宁市| 茂名市| 自贡市| 锡林浩特市| 榆树市| 靖州| 宣武区| 石狮市| 苍南县| 乌海市| 洪湖市| 八宿县| 德庆县| 文水县| 綦江县| 类乌齐县| 台北县| 原阳县| 铜鼓县| 庆阳市| 满洲里市| 广南县| 苏尼特左旗| 浦东新区| 合水县| 榆林市| 鸡东县| 方山县| 安塞县| 中西区| 平乐县| 衡水市| 乌拉特后旗| 邓州市| 肃北| 怀宁县| 曲水县|