找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Analysis on Foliated Spaces; Calvin C. Moore,Claude Schochet Book 1988 Springer-Verlag New York Inc. 1988 Characteristic class.coho

[復(fù)制鏈接]
查看: 48534|回復(fù): 42
樓主
發(fā)表于 2025-3-21 19:10:00 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Global Analysis on Foliated Spaces
編輯Calvin C. Moore,Claude Schochet
視頻videohttp://file.papertrans.cn/387/386012/386012.mp4
叢書名稱Mathematical Sciences Research Institute Publications
圖書封面Titlebook: Global Analysis on Foliated Spaces;  Calvin C. Moore,Claude Schochet Book 1988 Springer-Verlag New York Inc. 1988 Characteristic class.coho
描述Global analysis has as its primary focus the interplay between the local analysis and the global geometry and topology of a manifold. This is seen classicallv in the Gauss-Bonnet theorem and its generalizations. which culminate in the Ativah-Singer Index Theorem [ASI] which places constraints on the solutions of elliptic systems of partial differential equations in terms of the Fredholm index of the associated elliptic operator and characteristic differential forms which are related to global topologie al properties of the manifold. The Ativah-Singer Index Theorem has been generalized in several directions. notably by Atiyah-Singer to an index theorem for families [AS4]. The typical setting here is given by a family of elliptic operators (Pb) on the total space of a fibre bundle P = F_M_B. where is defined the Hilbert space on Pb 2 L 1p -llbl.dvollFll. In this case there is an abstract index class indlPI E ROIBI. Once the problem is properly formulated it turns out that no further deep analvtic information is needed in order to identify the class. These theorems and their equivariant counterparts have been enormously useful in topology. geometry. physics. and in representation theo
出版日期Book 1988
關(guān)鍵詞Characteristic class; cohomology; geometry; homology; operator algebra
版次1
doihttps://doi.org/10.1007/978-1-4613-9592-8
isbn_softcover978-1-4613-9594-2
isbn_ebook978-1-4613-9592-8Series ISSN 0940-4740
issn_series 0940-4740
copyrightSpringer-Verlag New York Inc. 1988
The information of publication is updating

書目名稱Global Analysis on Foliated Spaces影響因子(影響力)




書目名稱Global Analysis on Foliated Spaces影響因子(影響力)學(xué)科排名




書目名稱Global Analysis on Foliated Spaces網(wǎng)絡(luò)公開度




書目名稱Global Analysis on Foliated Spaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Global Analysis on Foliated Spaces被引頻次




書目名稱Global Analysis on Foliated Spaces被引頻次學(xué)科排名




書目名稱Global Analysis on Foliated Spaces年度引用




書目名稱Global Analysis on Foliated Spaces年度引用學(xué)科排名




書目名稱Global Analysis on Foliated Spaces讀者反饋




書目名稱Global Analysis on Foliated Spaces讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:31:13 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:05:43 | 只看該作者
地板
發(fā)表于 2025-3-22 08:29:13 | 只看該作者
5#
發(fā)表于 2025-3-22 12:14:28 | 只看該作者
6#
發(fā)表于 2025-3-22 14:07:36 | 只看該作者
7#
發(fā)表于 2025-3-22 18:41:55 | 只看該作者
0940-4740 to identify the class. These theorems and their equivariant counterparts have been enormously useful in topology. geometry. physics. and in representation theo978-1-4613-9594-2978-1-4613-9592-8Series ISSN 0940-4740
8#
發(fā)表于 2025-3-22 23:31:30 | 只看該作者
978-1-4613-9594-2Springer-Verlag New York Inc. 1988
9#
發(fā)表于 2025-3-23 03:38:55 | 只看該作者
Global Analysis on Foliated Spaces978-1-4613-9592-8Series ISSN 0940-4740
10#
發(fā)表于 2025-3-23 07:34:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
麻阳| 英山县| 沾化县| 辽阳市| 井冈山市| 怀安县| 屏山县| 灵台县| 黄骅市| 武定县| 杂多县| 江油市| 临朐县| 新平| 阿坝县| 从江县| 乐陵市| 车致| 永安市| 思茅市| 集贤县| 宣恩县| 正宁县| 丽水市| 神农架林区| 江达县| 将乐县| 渑池县| 大荔县| 陆河县| 静宁县| 彭阳县| 孟连| 云南省| 天镇县| 潞城市| 门头沟区| 通河县| 桦甸市| 临清市| 赣榆县|