找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Gleason‘s Theorem and Its Applications; Anatolij Dvure?enskij Book 1993 Springer Science+Business Media B.V. 1993 Finite.Lattice.Probabili

[復(fù)制鏈接]
查看: 31784|回復(fù): 38
樓主
發(fā)表于 2025-3-21 19:47:23 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Gleason‘s Theorem and Its Applications
編輯Anatolij Dvure?enskij
視頻videohttp://file.papertrans.cn/386/385913/385913.mp4
叢書名稱Mathematics and its Applications
圖書封面Titlebook: Gleason‘s Theorem and Its Applications;  Anatolij Dvure?enskij Book 1993 Springer Science+Business Media B.V. 1993 Finite.Lattice.Probabili
描述For many years physics and mathematics have had a fruitful influence on one another. Classical mechanics and celestial mechanics have produced very deep problems whose solutions have enhanced mathematics. On the other hand, mathematics itself has found interesting theories which then (sometimes after many years) have been reflected in physics, confirming the thesis that nothing is more practical than a good theory. The same is true for the younger physical discipline -of quantum mechanics. In the 1930s two events, not at all random, became: The mathematical back- grounds of both quantum mechanics and probability theory. In 1936, G. Birkhoff and J. von Neumann published their historical paper "The logic of quantum mechanics", in which a quantum logic was suggested. The mathematical foundations of quantum mechanics remains an outstanding problem of mathematics, physics, logic and philosophy even today. The theory of quantum logics is a major stream in this axiomatical knowledge river, where L(H), the system of all closed subspaces of a Hilbert space H, due to J. von Neumann, plays an important role. When A.M. Gleason published his solution to G. Mackey‘s problem showing that any stat
出版日期Book 1993
關(guān)鍵詞Finite; Lattice; Probability theory; measure theory; proof; quantum mechanics; theorem
版次1
doihttps://doi.org/10.1007/978-94-015-8222-3
isbn_softcover978-90-481-4209-5
isbn_ebook978-94-015-8222-3Series ISSN 0169-507X
issn_series 0169-507X
copyrightSpringer Science+Business Media B.V. 1993
The information of publication is updating

書目名稱Gleason‘s Theorem and Its Applications影響因子(影響力)




書目名稱Gleason‘s Theorem and Its Applications影響因子(影響力)學(xué)科排名




書目名稱Gleason‘s Theorem and Its Applications網(wǎng)絡(luò)公開度




書目名稱Gleason‘s Theorem and Its Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Gleason‘s Theorem and Its Applications被引頻次




書目名稱Gleason‘s Theorem and Its Applications被引頻次學(xué)科排名




書目名稱Gleason‘s Theorem and Its Applications年度引用




書目名稱Gleason‘s Theorem and Its Applications年度引用學(xué)科排名




書目名稱Gleason‘s Theorem and Its Applications讀者反饋




書目名稱Gleason‘s Theorem and Its Applications讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:20:48 | 只看該作者
Theory of Quantum Logic,mann [23] as an analogy to the Kolmogorov probability model [215] appropriated to the description of the probability realm of quantum mechanics.. One of the most important quantum logics models is that of all closed subspaces of a Hilbert space, originally introduced by J. von Neumann [297] only for
板凳
發(fā)表于 2025-3-22 01:22:44 | 只看該作者
,Gleason’s Theorem and Completeness Criteria, important role in quantum mechanical measurements. If we omit the completeness assumption on ., we obtain inner product spaces which possess Hilbert spaces as a proper subclass, and which were introduced in Chapter 1. Besides, in the last period, different families of closed subspaces of inner prod
地板
發(fā)表于 2025-3-22 06:13:10 | 只看該作者
5#
發(fā)表于 2025-3-22 12:42:53 | 只看該作者
Plant Mitochondrial Cytochromes,mann [23] as an analogy to the Kolmogorov probability model [215] appropriated to the description of the probability realm of quantum mechanics.. One of the most important quantum logics models is that of all closed subspaces of a Hilbert space, originally introduced by J. von Neumann [297] only for
6#
發(fā)表于 2025-3-22 16:06:50 | 只看該作者
7#
發(fā)表于 2025-3-22 18:37:47 | 只看該作者
8#
發(fā)表于 2025-3-22 22:44:25 | 只看該作者
9#
發(fā)表于 2025-3-23 01:59:49 | 只看該作者
10#
發(fā)表于 2025-3-23 07:24:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 15:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
淮阳县| 荔浦县| 津市市| 永登县| 松原市| 易门县| 柯坪县| 东丽区| 崇仁县| 建宁县| 开化县| 香港| 海丰县| 恩施市| 南康市| 同仁县| 宁强县| 托克托县| 邢台市| 海口市| 西盟| 金华市| 大埔区| 南漳县| 民勤县| 芜湖县| 博爱县| 泾川县| 玛多县| 托里县| 拉孜县| 永登县| 乐山市| 新兴县| 湘乡市| 邛崃市| 景洪市| 驻马店市| 石首市| 鞍山市| 松原市|