找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ginzburg-Landau Vortices; Fabrice Bethuel,Haim Brezis,Frederic Helein Book 2017 Springer International Publishing AG 2017 Ginzburg-Landau

[復(fù)制鏈接]
查看: 14554|回復(fù): 48
樓主
發(fā)表于 2025-3-21 18:37:10 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Ginzburg-Landau Vortices
編輯Fabrice Bethuel,Haim Brezis,Frederic Helein
視頻videohttp://file.papertrans.cn/386/385766/385766.mp4
概述Affordable, softcover reprint of a classic textbook.Authors are well-known specialists in nonlinear functional analysis and partial differential equations.Written in a clear, readable style with many
叢書名稱Modern Birkh?user Classics
圖書封面Titlebook: Ginzburg-Landau Vortices;  Fabrice Bethuel,Haim Brezis,Frederic Helein Book 2017 Springer International Publishing AG 2017 Ginzburg-Landau
描述.This book is concerned with the study in two dimensions of stationary solutions of u.?. of a complex valued Ginzburg-Landau equation involving a small parameter ?. Such problems are related to questions occurring in physics, e.g., phase transition phenomena in superconductors and superfluids. The parameter ? has a dimension of a length which is usually small.? Thus, it is of great interest to study the asymptotics as ? tends to zero...One of the main results asserts that the limit u-star of minimizers u.?. exists. Moreover, u-star is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree – or winding number – of the boundary condition. Each singularity has degree one – or as physicists would say, vortices are quantized...The material presented in this book covers mostly original results by the authors. It assumes a moderate knowledge of nonlinear functional analysis,partial differential equations, and complex functions. This book is designed for researchers and graduate students alike, and can be used as a one-semester text. The present softcover reprint is designed to make this classic text avail
出版日期Book 2017
關(guān)鍵詞Ginzburg-Landau Vortices; Partial Differential Equations; Phase Transition Phenomena; Superconductors; S
版次1
doihttps://doi.org/10.1007/978-3-319-66673-0
isbn_softcover978-3-319-66672-3
isbn_ebook978-3-319-66673-0Series ISSN 2197-1803 Series E-ISSN 2197-1811
issn_series 2197-1803
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Ginzburg-Landau Vortices影響因子(影響力)




書目名稱Ginzburg-Landau Vortices影響因子(影響力)學(xué)科排名




書目名稱Ginzburg-Landau Vortices網(wǎng)絡(luò)公開度




書目名稱Ginzburg-Landau Vortices網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Ginzburg-Landau Vortices被引頻次




書目名稱Ginzburg-Landau Vortices被引頻次學(xué)科排名




書目名稱Ginzburg-Landau Vortices年度引用




書目名稱Ginzburg-Landau Vortices年度引用學(xué)科排名




書目名稱Ginzburg-Landau Vortices讀者反饋




書目名稱Ginzburg-Landau Vortices讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:00:41 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:49:06 | 只看該作者
978-3-319-66672-3Springer International Publishing AG 2017
地板
發(fā)表于 2025-3-22 06:01:06 | 只看該作者
Ginzburg-Landau Vortices978-3-319-66673-0Series ISSN 2197-1803 Series E-ISSN 2197-1811
5#
發(fā)表于 2025-3-22 10:52:35 | 只看該作者
The lower bound for the energy of S-valued maps on Perforated domains,
6#
發(fā)表于 2025-3-22 13:17:00 | 只看該作者
7#
發(fā)表于 2025-3-22 19:57:32 | 只看該作者
An upper bound for the energy of UE away for the singularities,
8#
發(fā)表于 2025-3-22 23:59:05 | 只看該作者
9#
發(fā)表于 2025-3-23 03:27:53 | 只看該作者
The configuration (aj) minimizes the renormalized energy W,
10#
發(fā)表于 2025-3-23 06:45:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
秭归县| 丰都县| 利川市| 绥阳县| 安仁县| 锡林浩特市| 闸北区| 阿拉尔市| 普宁市| 板桥市| 浠水县| 永宁县| 徐汇区| 安国市| 同仁县| 康马县| 嘉禾县| 黑河市| 怀仁县| 天峨县| 醴陵市| 南靖县| 山西省| 庆城县| 增城市| 东乌珠穆沁旗| 贵定县| 甘洛县| 南和县| 潼南县| 神池县| 衡阳县| 甘孜县| 阿克陶县| 通城县| 龙山县| 喀什市| 永嘉县| 襄樊市| 蓝山县| 南康市|