找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Gew?hnliche Differentialgleichungen; Eine Symbiose von kl Jürgen Scheurle Textbook 2017 Springer International Publishing AG 2017 Gew?hnlic

[復制鏈接]
樓主: 空格
11#
發(fā)表于 2025-3-23 09:57:16 | 只看該作者
12#
發(fā)表于 2025-3-23 15:36:56 | 只看該作者
William H. Velander,Kevin E. van Cottruktionsm?glichkeiten für partikul?re L?sungen von inhomogenen linearen GDGn werden ausführlich diskutiert, unter anderem die so genannte Methode der Variation der Konstanten. Diese wird zur Herleitung einer expliziten L?sungsformel für das zugeh?rige AWP benutzt.
13#
發(fā)表于 2025-3-23 19:58:21 | 只看該作者
GDGn 1. Ordnung im $mathbb{R}^n$,erbei stehen topologische und geometrische Eigenschaften von L?sungen bzw. von L?sungsmengen der betrachteten GDGn im Fokus des behandelten Stoffs. Auch der Satz von Hartman-Grobman für so genannte hyperbolische Gleichgewichtspunkte wird formuliert.
14#
發(fā)表于 2025-3-23 23:57:01 | 只看該作者
Lineare GDGn 1. Ordnung im $mathbb{R}^n$,ruktionsm?glichkeiten für partikul?re L?sungen von inhomogenen linearen GDGn werden ausführlich diskutiert, unter anderem die so genannte Methode der Variation der Konstanten. Diese wird zur Herleitung einer expliziten L?sungsformel für das zugeh?rige AWP benutzt.
15#
發(fā)表于 2025-3-24 05:42:33 | 只看該作者
16#
發(fā)表于 2025-3-24 08:56:01 | 只看該作者
17#
發(fā)表于 2025-3-24 12:48:09 | 只看該作者
18#
發(fā)表于 2025-3-24 15:59:17 | 只看該作者
GDGn 1. Ordnung im $mathbb{R}^n$,el 3 behandelter S?tze der klassischen Theorie von GDGn für das zugeh?rige AWP werden hier grundlegende Begriffe und Konzepte der qualitativen Theorie von GDGn wie Phasenraum, Phasenfluss, Gleichgewichtspunkt, Orbit, Stabilit?t, ?quivalenz, Normalformen usw. eingeführt und ausführlich diskutiert. Hi
19#
發(fā)表于 2025-3-24 21:23:24 | 只看該作者
Lineare GDGn 1. Ordnung im $mathbb{R}^n$,rd in Kapitel 4 im Detail entwickelt. Insbesondere erm?glicht es diese Theorie im Fall linearer GDGn mit konstanten Koeffizienten (mit konstanter Systemmatrix) stets, die Gesamtheit aller L?sungen (die allgemeine L?sung) explizit zu konstruieren. Dazu werden mehrere Verfahren vorgestellt. Auch Konst
20#
發(fā)表于 2025-3-24 23:58:33 | 只看該作者
,GDGn h?herer Ordnung,ird, kann man so die in den Kapiteln zuvor entwickelte Theorie sowie die entsprechenden L?sungsmethoden auf GDGn h?herer Ordnung übertragen. Dies gilt insbesondere für das zugeh?rige AWP. Spezielle L?sungsans?tze sind allerdings gelegentlich vorteilhaft. Auch solche werden vorgestellt. Neben dem zug
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 09:42
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
久治县| 磴口县| 辽阳市| 那曲县| 买车| 揭阳市| 达日县| 公安县| 资阳市| 松溪县| 赣州市| 永安市| 澎湖县| 樟树市| 山阴县| 合川市| 大悟县| 体育| 邵阳县| 建宁县| 兴山县| 二手房| 龙泉市| 马龙县| 杭锦后旗| 黄陵县| 慈溪市| 金阳县| 苏尼特左旗| 肥乡县| 铜鼓县| 白朗县| 河北区| 平度市| 巫溪县| 峨边| 临猗县| 武平县| 青州市| 巨野县| 隆昌县|