找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Gewinnen Strategien für mathematische Spiele; Band 2 B?umchen-wech Elwyn R. Berlekamp,John H. Conway,Richard K. Guy Book 1986 Springer Fach

[復(fù)制鏈接]
樓主: 貶損
11#
發(fā)表于 2025-3-23 13:09:29 | 只看該作者
Handbook of Blended Shore Educationkehrt. Kapitel 4 behandelt unter anderem C. A. B. Smiths ganze Theorie der neutralen Spiele mit Schleifen. In diesem Kapitel hingegen werden wir sehen, da? die Theorie der . Spiele mit Schleifen ganz ungew?hnlich ist.
12#
發(fā)表于 2025-3-23 14:25:21 | 只看該作者
13#
發(fā)表于 2025-3-23 21:25:02 | 只看該作者
14#
發(fā)表于 2025-3-24 00:27:48 | 只看該作者
Bejoy Thomas,Krishnakumar Melethil Regeln haben sichergestellt, da? die Spiele nach endlich vielen Zügen zu Ende waren, wobei der Spieler, der den letzten Zug hatte, gewann. Zur Abwechslung wollen wir uns jetzt mal anschauen, was passiert, wenn wir gegen ein paar dieser Regeln versto?en.
15#
發(fā)表于 2025-3-24 03:38:24 | 只看該作者
16#
發(fā)表于 2025-3-24 08:50:47 | 只看該作者
Handbook of Blended Shore Educationgung genügen. Im ersten Teil dieses Kapitels werden einige Spiele dieser Art beschrieben. Interessanter sind die Spiele, welche man durch Weglassen der Endebedingung erh?lt. Wir nennen sie . (oder auch ., denn es kommt bei solchen Spielen h?ufig vor, da? man immer wieder zur gleichen Position zurück
17#
發(fā)表于 2025-3-24 13:41:43 | 只看該作者
https://doi.org/10.1007/978-1-4471-4315-4Theorien dieses Kapitels handeln von . Spielen: der Theorie von C. A. B. Smith über unparteiische Schleifenspiele, und unserer eigenen Theorie über Spiele mit nachwirkenden und Kompliment-Zügen. Die schwierigeren Theorien über polarisierte Schleifenspiele und der misère-Variante gew?hnlicher polaris
18#
發(fā)表于 2025-3-24 17:51:37 | 只看該作者
19#
發(fā)表于 2025-3-24 20:39:09 | 只看該作者
,B?umchen-wechsle-dich, Regeln haben sichergestellt, da? die Spiele nach endlich vielen Zügen zu Ende waren, wobei der Spieler, der den letzten Zug hatte, gewann. Zur Abwechslung wollen wir uns jetzt mal anschauen, was passiert, wenn wir gegen ein paar dieser Regeln versto?en.
20#
發(fā)表于 2025-3-25 02:15:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 00:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长子县| 秦安县| 二连浩特市| 湘潭市| 静安区| 临沂市| 金华市| 乌拉特后旗| 自贡市| 文化| 尼玛县| 湾仔区| 灵山县| 德保县| 铅山县| 门源| 龙山县| 龙泉市| 库车县| 景洪市| 封开县| 宁安市| 泸州市| 德钦县| 通榆县| 南木林县| 遂川县| 庄浪县| 哈尔滨市| 西吉县| 合肥市| 龙口市| 延津县| 泽库县| 启东市| 青阳县| 当涂县| 乐平市| 逊克县| 集安市| 鸡西市|