找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geostatistics for Compositional Data with R; Raimon Tolosana-Delgado,Ute Mueller Book 2021 Springer Nature Switzerland AG 2021 composition

[復制鏈接]
查看: 16479|回復: 46
樓主
發(fā)表于 2025-3-21 16:39:05 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geostatistics for Compositional Data with R
編輯Raimon Tolosana-Delgado,Ute Mueller
視頻videohttp://file.papertrans.cn/385/384107/384107.mp4
概述Gives an integrated approach to geostatistical modelling of compositional data.Modelling approaches are illustrated through detailed examples from real world data.Presents workflows and R code for all
叢書名稱Use R!
圖書封面Titlebook: Geostatistics for Compositional Data with R;  Raimon Tolosana-Delgado,Ute Mueller Book 2021 Springer Nature Switzerland AG 2021 composition
描述.This book provides a guided approach to the geostatistical modelling of compositional spatial data. These data are data in proportions, percentages or concentrations distributed in space which exhibit spatial correlation. The book can be divided into four blocks. The first block sets the framework and provides some background on compositional data analysis. Block two introduces compositional exploratory tools for both non-spatial and spatial aspects. Block three covers all necessary facets of multivariate spatial prediction for compositional data: variogram modelling, cokriging and validation. Finally, block four details strategies for simulation of compositional data, including transformations to multivariate normality, Gaussian cosimulation, multipoint simulation of compositional data, and common postprocessing techniques, valid for both Gaussian and multipoint methods...?All methods are illustrated via applications to two types of data sets: one a large-scale geochemical survey, comprised of a full suite of geochemical variables, and the other from a mining context, where only the elements of greatest importance are considered. R codes are included for all aspects of the method
出版日期Book 2021
關鍵詞compositional data analysis; Multivariate kriging; Spatial factor analysis; Crossvalidation; Spatial dec
版次1
doihttps://doi.org/10.1007/978-3-030-82568-3
isbn_softcover978-3-030-82570-6
isbn_ebook978-3-030-82568-3Series ISSN 2197-5736 Series E-ISSN 2197-5744
issn_series 2197-5736
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Geostatistics for Compositional Data with R影響因子(影響力)




書目名稱Geostatistics for Compositional Data with R影響因子(影響力)學科排名




書目名稱Geostatistics for Compositional Data with R網絡公開度




書目名稱Geostatistics for Compositional Data with R網絡公開度學科排名




書目名稱Geostatistics for Compositional Data with R被引頻次




書目名稱Geostatistics for Compositional Data with R被引頻次學科排名




書目名稱Geostatistics for Compositional Data with R年度引用




書目名稱Geostatistics for Compositional Data with R年度引用學科排名




書目名稱Geostatistics for Compositional Data with R讀者反饋




書目名稱Geostatistics for Compositional Data with R讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:38:18 | 只看該作者
Geostatistics for Compositional Data with R978-3-030-82568-3Series ISSN 2197-5736 Series E-ISSN 2197-5744
板凳
發(fā)表于 2025-3-22 00:27:28 | 只看該作者
The Case of Santa Barbara City College,This chapter provides the framework for the contents of this book. This includes a brief introduction to the problem of geospatial analysis of compositional data and approaches to the solution. Additionally, the data sets and the . packages used throughout the book are presented.
地板
發(fā)表于 2025-3-22 08:11:07 | 只看該作者
Experience, Age, Education, Gender, and RaceThis chapter provides the concepts from compositional data analysis required to prepare compositional data for geostatistical treatment. Specifically we define the term closure, its rationale and caveats, and the various ways of escaping from its curse, i.e. the various forms of log-ratio transformation.
5#
發(fā)表于 2025-3-22 10:13:56 | 只看該作者
6#
發(fā)表于 2025-3-22 12:59:11 | 只看該作者
David Smallbone,Friederike WelterIn this chapter the tools for spatial exploratory analysis are provided. These include data postings, swathplots and experimental variograms.
7#
發(fā)表于 2025-3-22 21:07:09 | 只看該作者
Eirini Daskalaki,Denis Hyams-SsekasiHere we look at model fitting. The structural functions mainly used for model fitting are introduced. The main tool for model fitting is the linear model of coregionalisation, but the application of the MAF transformation to build a linear model of coregionalisation is also demonstrated.
8#
發(fā)表于 2025-3-22 21:34:50 | 只看該作者
9#
發(fā)表于 2025-3-23 02:45:28 | 只看該作者
Lessons from Czech Privatisation,Cross-validation is a technique devised to provide a quality assessment of the estimates derived from cokriging and allows appraising different modelling approaches in terms of the choice of variograms and search neighbourhoods.
10#
發(fā)表于 2025-3-23 06:58:19 | 只看該作者
Veland Ramadani,Léo-Paul Dana,Vanessa RattenIn many instances it is desirable to capture more than the first two moments of the data when exploring their variability. In this chapter direct sampling simulation for compositional data is introduced, which explicitly incorporates multiple-point statistics in the simulation.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 14:59
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
麻栗坡县| 全南县| 岗巴县| 新郑市| 资源县| 新昌县| 七台河市| 比如县| 灵石县| 卢湾区| 城固县| 乌兰浩特市| 荣成市| 甘孜| 内江市| 辽中县| 西华县| 黄平县| 汉中市| 偏关县| 隆林| 汾西县| 斗六市| 塘沽区| 阿克苏市| 和平区| 拜城县| 南木林县| 红原县| 武宁县| 友谊县| 万荣县| 宾川县| 江安县| 台山市| 临朐县| 西吉县| 宜州市| 呼和浩特市| 凉山| 马鞍山市|