找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geostatistical Methods for Reservoir Geophysics; Leonardo Azevedo,Amílcar Soares Book 2017 Springer International Publishing AG 2017 Geost

[復(fù)制鏈接]
查看: 31923|回復(fù): 38
樓主
發(fā)表于 2025-3-21 20:06:00 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geostatistical Methods for Reservoir Geophysics
編輯Leonardo Azevedo,Amílcar Soares
視頻videohttp://file.papertrans.cn/385/384092/384092.mp4
概述Presents real data application examples for geostatistical modeling.Provides a detailed description on the geostatistical background.Describes novel geostatistical seismic inversion methodologies.Incl
叢書名稱Advances in Oil and Gas Exploration & Production
圖書封面Titlebook: Geostatistical Methods for Reservoir Geophysics;  Leonardo Azevedo,Amílcar Soares Book 2017 Springer International Publishing AG 2017 Geost
描述.This book presents a geostatistical framework for data integration into subsurface Earth modeling. It offers extensive geostatistical background information, including detailed descriptions of the main geostatistical tools traditionally used in Earth related sciences to infer the spatial distribution of a given property of interest. This framework is then directly linked with applications in the oil and gas industry and how it can be used as the basis to simultaneously integrate geophysical data (e.g. seismic reflection data) and well-log data into reservoir modeling and characterization.?All of the cutting-edge methodologies presented here are first approached from a theoretical point of view and then supplemented by sample applications from real case studies involving different geological scenarios and different challenges.?The book offers a valuable resource for students who are interested in learning more about the fascinating world of geostatistics and reservoir modeling and characterization. It offers them a deeper understanding of the main geostatistical concepts and how geostatistics can be used to achieve better data integration and reservoir modeling..
出版日期Book 2017
關(guān)鍵詞Geostatistics; Stochastic Simulation; Reservoir Modeling; Seismic Reservoir Characterization; Geophysica
版次1
doihttps://doi.org/10.1007/978-3-319-53201-1
isbn_softcover978-3-319-85088-7
isbn_ebook978-3-319-53201-1Series ISSN 2509-372X Series E-ISSN 2509-3738
issn_series 2509-372X
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Geostatistical Methods for Reservoir Geophysics影響因子(影響力)




書目名稱Geostatistical Methods for Reservoir Geophysics影響因子(影響力)學(xué)科排名




書目名稱Geostatistical Methods for Reservoir Geophysics網(wǎng)絡(luò)公開度




書目名稱Geostatistical Methods for Reservoir Geophysics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geostatistical Methods for Reservoir Geophysics被引頻次




書目名稱Geostatistical Methods for Reservoir Geophysics被引頻次學(xué)科排名




書目名稱Geostatistical Methods for Reservoir Geophysics年度引用




書目名稱Geostatistical Methods for Reservoir Geophysics年度引用學(xué)科排名




書目名稱Geostatistical Methods for Reservoir Geophysics讀者反饋




書目名稱Geostatistical Methods for Reservoir Geophysics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:18:59 | 只看該作者
Geostatistical Methods for Reservoir Geophysics978-3-319-53201-1Series ISSN 2509-372X Series E-ISSN 2509-3738
板凳
發(fā)表于 2025-3-22 02:01:24 | 只看該作者
English for Cross-Cultural CommunicationThis book seeks to fill the gap between traditional geostatistical methodology tools for reservoir modeling and characterization, and inverse procedures for integrating different data within the geo-modeling workflow.
地板
發(fā)表于 2025-3-22 08:34:20 | 只看該作者
5#
發(fā)表于 2025-3-22 10:30:12 | 只看該作者
Campus Anglicization, Critical Ironies,echniques in subsurface modeling and characterization, and their ability for uncertainty assessment. These concepts are introduced focusing its application in real problems of the oil and gas industry.
6#
發(fā)表于 2025-3-22 16:41:45 | 只看該作者
ELF Education for the Japanese Contexte concepts related with Random Fields and Random Variables and how a bi-point statistics framework (i.e. the variogram model) can be used to characterize the spatial continuity pattern of a given property of interest. After which the different linear estimation models based on Kriging are presented.
7#
發(fā)表于 2025-3-22 18:17:03 | 只看該作者
8#
發(fā)表于 2025-3-22 23:17:25 | 只看該作者
9#
發(fā)表于 2025-3-23 02:51:35 | 只看該作者
10#
發(fā)表于 2025-3-23 07:19:35 | 只看該作者
https://doi.org/10.1007/978-3-540-77127-2s to integrate CSEM (electromagnetic) data into seismic reflection data and historic production data into seismic inversion. With this, we intend to open the door for new frameworks and tools to properly integrate all the available data from different nature into reservoir modelling and characteriza
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江门市| 宁海县| 三亚市| 敦化市| 册亨县| 武冈市| 客服| 沙田区| 曲周县| 肃北| 绥棱县| 扎兰屯市| 庐江县| 永吉县| 肥城市| 五台县| 陕西省| 孟津县| 玉田县| 子洲县| 遂平县| 怀来县| 南溪县| 竹山县| 冕宁县| 乌拉特后旗| 吴忠市| 眉山市| 调兵山市| 察雅县| 哈尔滨市| 柘荣县| 安图县| 金门县| 思茅市| 巴林左旗| 永昌县| 肥西县| 静宁县| 溧水县| 和田县|