找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geospatial Intelligence; Applications and Fut Fatimazahra Barramou,El Hassan El Brirchi,Youness Book 2022 The Editor(s) (if applicable) an

[復(fù)制鏈接]
樓主: INFER
21#
發(fā)表于 2025-3-25 03:39:23 | 只看該作者
Subimages-Based Approach for Landslide Susceptibility Mapping Using Convolutional Neural Networknsity, elevation, roughness, and aspect. A susceptibility index map was generated in the Aknoul Region in the Rif to illustrate the CNN results. We found that areas with very high susceptibility index are affected the most by landslides.
22#
發(fā)表于 2025-3-25 07:39:12 | 只看該作者
https://doi.org/10.1007/978-3-642-80381-9ad Dataset, which is publicly available. The results obtained showed excellent performance in terms of recall, precision, accuracy, and F1 score, and they are very close to the ground truth; it outperforms all other models presented, with a high accuracy of 97.7%.
23#
發(fā)表于 2025-3-25 14:03:22 | 只看該作者
24#
發(fā)表于 2025-3-25 19:48:14 | 只看該作者
Deep Convolution Neural Network for Automated Method of Road Extraction on Aerial Imageryad Dataset, which is publicly available. The results obtained showed excellent performance in terms of recall, precision, accuracy, and F1 score, and they are very close to the ground truth; it outperforms all other models presented, with a high accuracy of 97.7%.
25#
發(fā)表于 2025-3-25 23:16:48 | 只看該作者
Toward a Deep Learning Approach for Automatic Semantic Segmentation of 3D Lidar Point Clouds in Urbaand other sources in conjunction with a Deep Learning technique whose objective is to automatically extract semantic information from airborne Lidar point clouds by enhancing both accuracy and semantic precision compared to the existing methods. We finally present the first results of our approach.
26#
發(fā)表于 2025-3-26 03:12:01 | 只看該作者
27#
發(fā)表于 2025-3-26 04:54:11 | 只看該作者
The Conscious Agent and the Hope of Progressy cover, then estimating the dry biomass using a simple regression model that estimates the weight of a single rosemary tuff. The results are maps of the rosemary cover density where the random forest classifier gave high validation scores (67.5, 75.5, and 80%). The tuff weight estimator gave an accuracy of 7%.
28#
發(fā)表于 2025-3-26 10:28:37 | 只看該作者
29#
發(fā)表于 2025-3-26 14:57:34 | 只看該作者
30#
發(fā)表于 2025-3-26 17:35:38 | 只看該作者
Opportunities for Artificial Intelligence in Precision Agriculture Using Satellite Remote Sensingusing satellite remote sensing, and concern recent studies were conducted in the latest years 2019–2020. The accent was also pointed to the potential of AI in precision agriculture, the challenges, future needs, and trends in the field.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 05:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
甘泉县| 贡山| 天柱县| 黑龙江省| 廉江市| 山西省| 碌曲县| 安福县| 大理市| 古浪县| 武平县| 洛隆县| 凤翔县| 三河市| 册亨县| 镇坪县| 灵璧县| 东乡族自治县| 阿坝县| 桃江县| 白玉县| 吉木萨尔县| 洪洞县| 文山县| 中西区| 临泽县| 徐水县| 鸡东县| 萨嘎县| 宁蒗| 新乡市| 大渡口区| 罗江县| 广河县| 安泽县| 诸暨市| 洪泽县| 罗田县| 射洪县| 上栗县| 井冈山市|