找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geophysical Applications of Artificial Neural Networks and Fuzzy Logic; William A. Sandham,Miles Leggett Book 2003 Springer Science+Busine

[復(fù)制鏈接]
查看: 24849|回復(fù): 59
樓主
發(fā)表于 2025-3-21 16:56:47 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geophysical Applications of Artificial Neural Networks and Fuzzy Logic
編輯William A. Sandham,Miles Leggett
視頻videohttp://file.papertrans.cn/384/383887/383887.mp4
叢書名稱Modern Approaches in Geophysics
圖書封面Titlebook: Geophysical Applications of Artificial Neural Networks and Fuzzy Logic;  William A. Sandham,Miles Leggett Book 2003 Springer Science+Busine
描述The past fifteen years has witnessed an explosive growth in the fundamental research and applications of artificial neural networks (ANNs) and fuzzy logic (FL). The main impetus behind this growth has been the ability of such methods to offer solutions not amenable to conventional techniques, particularly in application domains involving pattern recognition, prediction and control. Although the origins of ANNs and FL may be traced back to the 1940s and 1960s, respectively, the most rapid progress has only been achieved in the last fifteen years. This has been due to significant theoretical advances in our understanding of ANNs and FL, complemented by major technological developments in high-speed computing. In geophysics, ANNs and FL have enjoyed significant success and are now employed routinely in the following areas (amongst others): 1. Exploration Seismology. (a) Seismic data processing (trace editing; first break picking; deconvolution and multiple suppression; wavelet estimation; velocity analysis; noise identification/reduction; statics analysis; dataset matching/prediction, attenuation), (b) AVO analysis, (c) Chimneys, (d) Compression I dimensionality reduction, (e) Shear-w
出版日期Book 2003
關(guān)鍵詞Fuzzy; Information; Map; Reservoir; artificial intelligence; classification; fuzzy logic; geophysics; intell
版次1
doihttps://doi.org/10.1007/978-94-017-0271-3
isbn_softcover978-90-481-6476-9
isbn_ebook978-94-017-0271-3Series ISSN 0924-6096
issn_series 0924-6096
copyrightSpringer Science+Business Media Dordrecht 2003
The information of publication is updating

書目名稱Geophysical Applications of Artificial Neural Networks and Fuzzy Logic影響因子(影響力)




書目名稱Geophysical Applications of Artificial Neural Networks and Fuzzy Logic影響因子(影響力)學(xué)科排名




書目名稱Geophysical Applications of Artificial Neural Networks and Fuzzy Logic網(wǎng)絡(luò)公開度




書目名稱Geophysical Applications of Artificial Neural Networks and Fuzzy Logic網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geophysical Applications of Artificial Neural Networks and Fuzzy Logic被引頻次




書目名稱Geophysical Applications of Artificial Neural Networks and Fuzzy Logic被引頻次學(xué)科排名




書目名稱Geophysical Applications of Artificial Neural Networks and Fuzzy Logic年度引用




書目名稱Geophysical Applications of Artificial Neural Networks and Fuzzy Logic年度引用學(xué)科排名




書目名稱Geophysical Applications of Artificial Neural Networks and Fuzzy Logic讀者反饋




書目名稱Geophysical Applications of Artificial Neural Networks and Fuzzy Logic讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:12:10 | 只看該作者
Automated Picking of Seismic First-Arrivals with Neural Networksr perceptron neural network. The success of this technique depends on the statistical properties of the features input to the neural network, and the ability of the neural network to approximate a wide class of functions. Using methods from statistical pattern recognition, it is possible to determin
板凳
發(fā)表于 2025-3-22 02:16:59 | 只看該作者
Automated 3-D Horizon Tracking and Seismic Classification Using Artificial Neural Networks in the workload of an interpreter. An automatic tracker is described in this chapter, based on artificial neural networks (ANNs), which enables horizons to be tracked in three dimensions with less input from an interpreter compared to most commercial automatic trackers. More time can therefore be s
地板
發(fā)表于 2025-3-22 06:24:25 | 只看該作者
5#
發(fā)表于 2025-3-22 08:54:23 | 只看該作者
Refinement of Deconvolution by Neural Networksptive linear combiner (ALC), in order to refine the results of deconvolution. For example, the conventional method of designing a shaping filter for a minimum-delay wavelet, requires the computation of a fixed filter by the method of least-squares. An alternative approach, considered in this chapter
6#
發(fā)表于 2025-3-22 15:53:08 | 只看該作者
7#
發(fā)表于 2025-3-22 17:06:47 | 只看該作者
8#
發(fā)表于 2025-3-22 21:31:40 | 只看該作者
Seismic Principal Components Analysis Using Neural Networksix for different types of seismogram. Principal components analysis (PCA) using the GHA network enables the extraction of information regarding seismic reflections and uniform neighboring traces. The seismic data analyzed are seismic traces with 20, 25, and 30 Hz Ricker wavelets. The GHA network is
9#
發(fā)表于 2025-3-23 04:00:52 | 只看該作者
10#
發(fā)表于 2025-3-23 09:27:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沾益县| 远安县| 郸城县| 农安县| 儋州市| 苗栗县| 富蕴县| 寻甸| 新建县| 乡城县| 阿克| 鹤壁市| 萝北县| 江都市| 衡水市| 罗田县| 溧水县| 静海县| 万源市| 井陉县| 东丰县| 长乐市| 石门县| 大足县| 施秉县| 内乡县| 双鸭山市| 石渠县| 兴山县| 徐汇区| 漾濞| 会理县| 旬阳县| 海门市| 临颍县| 富裕县| 东乡族自治县| 延长县| 玉环县| 祁连县| 苏尼特右旗|