找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geomorphic Risk Reduction Using Geospatial Methods and Tools; Raju Sarkar,Sunil Saha,Rajib Shaw Book 2024 The Editor(s) (if applicable) an

[復制鏈接]
樓主: malignant
41#
發(fā)表于 2025-3-28 17:24:22 | 只看該作者
42#
發(fā)表于 2025-3-28 21:30:52 | 只看該作者
43#
發(fā)表于 2025-3-29 00:39:02 | 只看該作者
44#
發(fā)表于 2025-3-29 04:31:43 | 只看該作者
45#
發(fā)表于 2025-3-29 08:42:59 | 只看該作者
Introduction to the Finite Element Method, deposition of sediments. People in Manikchak, Kaliachak-II, and Kaliachak-III blocks of Malda district West Bengal were highly affected due to this river shifting in the lower course of the Ganga River. A few portions of the Rajmahal block of Jharkhand, located on the right side of the river are also affected.
46#
發(fā)表于 2025-3-29 14:28:32 | 只看該作者
47#
發(fā)表于 2025-3-29 18:59:18 | 只看該作者
Landslide Susceptibility Assessment Based on Machine Learning Techniquese datasets were recommended. A total of 9 machine learning methods applied in LSA were simply introduced. The advantages and future work of LSA based on machine learning techniques were summarized from the aspects of scale, performance, modeling, and interpretability.
48#
發(fā)表于 2025-3-29 22:55:56 | 只看該作者
49#
發(fā)表于 2025-3-30 02:40:52 | 只看該作者
The Adoption of Random Forest (RF) and Support Vector Machine (SVM) with Cat Swarm Optimization (CSOs that would be used for both training and testing by using a random sampling technique. This allowed us to have complete control over the models. It was discovered that CSO not only improved the fitting of the model and the quality of the results, but it also speed up the procedure.
50#
發(fā)表于 2025-3-30 05:44:02 | 只看該作者
Book 2024itional statistical methods and advanced machine learning methods and addresses the different ways to reduce the impact of geomorphic hazards..In recent years with the development of human infrastructures, geomorphic hazards are gradually increasing, which include landslides, flood and soil erosion,
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 22:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
砀山县| 汝南县| 清水县| 饶平县| 紫阳县| 府谷县| 印江| 乌苏市| 太原市| 浦北县| 宣汉县| 东兰县| 海晏县| 彰武县| 井冈山市| 临洮县| 大埔区| 沁水县| 临汾市| 丰城市| 象州县| 遂平县| 舒兰市| 德安县| 赣州市| 乌兰察布市| 印江| 红河县| 平武县| 花垣县| 铅山县| 泰安市| 陈巴尔虎旗| 托里县| 台州市| 太保市| 嘉鱼县| 侯马市| 宜昌市| 通辽市| 佛山市|