找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry, Lie Theory and Applications; The Abel Symposium 2 Sigbj?rn Hervik,Boris Kruglikov,Dennis The Conference proceedings 2022 The Edit

[復(fù)制鏈接]
樓主: proptosis
21#
發(fā)表于 2025-3-25 03:21:07 | 只看該作者
22#
發(fā)表于 2025-3-25 11:25:49 | 只看該作者
https://doi.org/10.1007/978-3-642-82930-7y affine geodesic but one closes smoothly (the exceptional geodesic is said to be alienated as it does not return). We exhibit an affine structure on the cylinder which is almost Zoll. This structure is geodesically complete, affine Killing complete, and affine symmetric.
23#
發(fā)表于 2025-3-25 14:13:57 | 只看該作者
24#
發(fā)表于 2025-3-25 19:02:43 | 只看該作者
25#
發(fā)表于 2025-3-25 22:14:53 | 只看該作者
https://doi.org/10.1007/978-3-662-36773-5omorphism type. When . is a subadjoint variety, the associated contact G-structure is a parabolic contact structure, for which we have the theory of Tanaka connection. We study the case when . is not a subadjoint variety and show that the canonical distribution on the associated contact G-structure
26#
發(fā)表于 2025-3-26 02:54:30 | 只看該作者
27#
發(fā)表于 2025-3-26 07:46:29 | 只看該作者
https://doi.org/10.1007/978-3-662-28803-0 conjectures in the solvable case. We also introduce an open and convex cone . of derivations attached to each nilpotent Lie algebra ., which is defined as the image of a moment map and parametrizes a set of solvable Lie algebras with nilradical . admitting Ricci negative metrics.
28#
發(fā)表于 2025-3-26 11:23:02 | 只看該作者
29#
發(fā)表于 2025-3-26 14:05:09 | 只看該作者
30#
發(fā)表于 2025-3-26 17:02:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
茂名市| 太康县| 临泽县| 邹平县| 靖州| 阿拉善盟| 藁城市| 高淳县| 枣庄市| 庐江县| 舒城县| 威远县| 若羌县| 成武县| 克拉玛依市| 潞西市| 五莲县| 建昌县| 隆回县| 高邮市| 万盛区| 闵行区| 九龙坡区| 库尔勒市| 普陀区| 东山县| 四川省| 平山县| 汉中市| 长治市| 襄樊市| 张掖市| 英吉沙县| 辽宁省| 崇阳县| 庆元县| 孟村| 桦甸市| 江华| 天门市| 泰安市|