找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry, Lie Theory and Applications; The Abel Symposium 2 Sigbj?rn Hervik,Boris Kruglikov,Dennis The Conference proceedings 2022 The Edit

[復(fù)制鏈接]
樓主: proptosis
21#
發(fā)表于 2025-3-25 03:21:07 | 只看該作者
22#
發(fā)表于 2025-3-25 11:25:49 | 只看該作者
https://doi.org/10.1007/978-3-642-82930-7y affine geodesic but one closes smoothly (the exceptional geodesic is said to be alienated as it does not return). We exhibit an affine structure on the cylinder which is almost Zoll. This structure is geodesically complete, affine Killing complete, and affine symmetric.
23#
發(fā)表于 2025-3-25 14:13:57 | 只看該作者
24#
發(fā)表于 2025-3-25 19:02:43 | 只看該作者
25#
發(fā)表于 2025-3-25 22:14:53 | 只看該作者
https://doi.org/10.1007/978-3-662-36773-5omorphism type. When . is a subadjoint variety, the associated contact G-structure is a parabolic contact structure, for which we have the theory of Tanaka connection. We study the case when . is not a subadjoint variety and show that the canonical distribution on the associated contact G-structure
26#
發(fā)表于 2025-3-26 02:54:30 | 只看該作者
27#
發(fā)表于 2025-3-26 07:46:29 | 只看該作者
https://doi.org/10.1007/978-3-662-28803-0 conjectures in the solvable case. We also introduce an open and convex cone . of derivations attached to each nilpotent Lie algebra ., which is defined as the image of a moment map and parametrizes a set of solvable Lie algebras with nilradical . admitting Ricci negative metrics.
28#
發(fā)表于 2025-3-26 11:23:02 | 只看該作者
29#
發(fā)表于 2025-3-26 14:05:09 | 只看該作者
30#
發(fā)表于 2025-3-26 17:02:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 15:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沾化县| 台江县| 宜昌市| 唐河县| 广水市| 保康县| 佛山市| 四川省| 克山县| 农安县| 邵东县| 渝中区| 当涂县| 高邑县| 益阳市| 那曲县| 博客| 芦溪县| 武邑县| 广东省| 渭源县| 淳安县| 万源市| 安国市| 松溪县| 峨眉山市| 泾源县| 睢宁县| 涟源市| 临沂市| 织金县| 夹江县| 施甸县| 仪陇县| 蓬莱市| 宁陵县| 义乌市| 于都县| 视频| 时尚| 安泽县|