找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry, Algebra, Number Theory, and Their Information Technology Applications; Toronto, Canada, Jun Amir Akbary,Sanoli Gun Conference pro

[復(fù)制鏈接]
樓主: Daidzein
11#
發(fā)表于 2025-3-23 10:53:32 | 只看該作者
Werkstoffe für die Randschichtbehandlungs fully faithful for every smooth projective curve of genus . It is proved in this present paper that the result is also true for non-hyperelliptic curves of genus 3. Combining known results in the case of hyperelliptic curves, one obtains that . is fully faithful for all . of genus ..
12#
發(fā)表于 2025-3-23 17:47:52 | 只看該作者
13#
發(fā)表于 2025-3-23 20:35:50 | 只看該作者
Anwendungen des Eisenbetonbaues,t is natural to consider the asymptotic behaviour of the function that counts the number of primes . such that the Frobenius fields of . and . at . coincide. In this short note, using Heath-Brown’s square sieve, we provide both conditional (upon the Generalized Riemann Hypothesis) and unconditional upper bounds.
14#
發(fā)表于 2025-3-23 23:04:55 | 只看該作者
https://doi.org/10.1007/978-3-642-91755-4 study the components, singularities and naturally defined stratifications of these surfaces, and their behavior under the morphisms. A particular role is played by a foliation we define on the blowup of . at its superspecial points.
15#
發(fā)表于 2025-3-24 04:27:54 | 只看該作者
16#
發(fā)表于 2025-3-24 07:10:25 | 只看該作者
17#
發(fā)表于 2025-3-24 14:18:22 | 只看該作者
18#
發(fā)表于 2025-3-24 14:52:39 | 只看該作者
19#
發(fā)表于 2025-3-24 22:50:06 | 只看該作者
https://doi.org/10.1007/978-3-662-28805-4 split general spin groups to the split spin groups. An equality between the multiplicity and another multiplicity occurring in the corresponding representations of Knapp–Stein .-groups is established and applied to formulate the multiplicity in restriction in terms of information from the .-groups.
20#
發(fā)表于 2025-3-24 23:35:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 04:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上杭县| 枣庄市| 新野县| 开封县| 济宁市| 武川县| 桂平市| 牙克石市| 扎囊县| 湟中县| 莎车县| 胶南市| 改则县| 班玛县| 河北区| 汪清县| 新乡县| 曲阜市| 庆阳市| 宁都县| 奉新县| 北碚区| 曲松县| 东方市| 常德市| 浦东新区| 苏尼特右旗| 普格县| 辉南县| 西贡区| 庆阳市| 独山县| 吉安市| 哈密市| 定西市| 鄱阳县| 瑞丽市| 闵行区| 泾阳县| 治多县| 张家港市|