找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry, Algebra and Applications: From Mechanics to Cryptography; Marco Castrillón López,Luis Hernández Encinas,Ma E Conference proceedi

[復(fù)制鏈接]
樓主: Reticent
11#
發(fā)表于 2025-3-23 11:47:03 | 只看該作者
12#
發(fā)表于 2025-3-23 16:57:46 | 只看該作者
13#
發(fā)表于 2025-3-23 18:12:53 | 只看該作者
Eisenbahn-Bau- und BetriebsordnungWe study the problem, suggested by Singer in [.], and consisting in determining a notion of “l(fā)ocal cohomology” adequate to deal with the problem of locality in those approaches to local anomalies based on the Atiyah–Singer index theorem.
14#
發(fā)表于 2025-3-24 00:45:15 | 只看該作者
Bef?rderung von lebenden ThierenWe present a survey of some results and questions related to the notion of scalar curvature in the setting of symplectic supermanifolds.
15#
發(fā)表于 2025-3-24 05:38:23 | 只看該作者
16#
發(fā)表于 2025-3-24 08:23:09 | 只看該作者
https://doi.org/10.1007/978-3-642-91461-4It is proved that Parton-Piccinni’s expression . of the canonical 8-form on a manifold with holonomy group . is not trivial, by using the properties of the octonions.
17#
發(fā)表于 2025-3-24 12:40:01 | 只看該作者
18#
發(fā)表于 2025-3-24 18:28:51 | 只看該作者
A Survey on Homogeneous Structures on the Classical Hyperbolic Spaces,This is a survey on homogeneous Riemannian, K?hler or quaternionic K?hler structures on the real, complex or quaternionic hyperbolic spaces ., . and ., respectively.
19#
發(fā)表于 2025-3-24 21:39:58 | 只看該作者
Local Structure of Self-Dual Gradient Yamabe Solitons,We analyze the underlying structure of a pseudo-Riemannian manifold admitting a gradient Yamabe soliton. Special attention is paid to neutral signature, where a description of self-dual gradient Yamabe solitons is obtained.
20#
發(fā)表于 2025-3-25 03:10:05 | 只看該作者
The Prescribed Curvature Problem in Low Dimension,We describe some recent results concerning the inverse curvature problem, that is, the existence and description of metrics with prescribed curvature, focusing on the low-dimensional homogeneous cases.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福贡县| 叶城县| 嘉荫县| 澄迈县| 兰西县| 海宁市| 门头沟区| 永靖县| 茌平县| 宣恩县| 永兴县| 长寿区| 天等县| 封开县| 肃宁县| 峨边| 叶城县| 高州市| 保定市| 成武县| 墨竹工卡县| 韩城市| 涟水县| 庆阳市| 绩溪县| 常宁市| 汽车| 邓州市| 开远市| 绥化市| 信阳市| 永兴县| 当阳市| 南木林县| 时尚| 黔东| 海林市| 高清| 乌拉特后旗| 太仓市| 东海县|