找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of the Unit Sphere in Polynomial Spaces; Jesús Ferrer,Domingo García,Juan B. Seoane Book 2022 The Author(s), under exclusive lice

[復(fù)制鏈接]
查看: 50293|回復(fù): 42
樓主
發(fā)表于 2025-3-21 18:40:04 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometry of the Unit Sphere in Polynomial Spaces
編輯Jesús Ferrer,Domingo García,Juan B. Seoane
視頻videohttp://file.papertrans.cn/384/383839/383839.mp4
概述Contains a comprehensive review on the geometry of Banach spaces of polynomials.Features over 50 original figures.Presents a number of applications
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: Geometry of the Unit Sphere in Polynomial Spaces;  Jesús Ferrer,Domingo García,Juan B. Seoane Book 2022 The Author(s), under exclusive lice
描述.This brief presents a global perspective on the geometry of spaces of polynomials. Its particular focus is on polynomial spaces of dimension 3, providing, in that case, a graphical representation of the unit ball. Also, the extreme points in the unit ball of several polynomial spaces are characterized. Finally, a number of applications to obtain sharp classical polynomial inequalities are presented..The study performed is the first ever complete account on the geometry of the unit ball of polynomial spaces. Nowadays there are hundreds of research papers on this topic and our work gathers the state of the art of the main and/or relevant results up to now. This book is intended for a broad audience, including undergraduate?and graduate students, junior and senior researchers and it also serves as a source book for consultation. In addition to that, we made this work visually attractive by including in it over 50 original figures in order to help in the understanding of allthe results and techniques included in the book..
出版日期Book 2022
關(guān)鍵詞Banach space of polynomials; polynomial norm; Banach space geometry; extreme point; Bernstein and Markov
版次1
doihttps://doi.org/10.1007/978-3-031-23676-1
isbn_softcover978-3-031-23675-4
isbn_ebook978-3-031-23676-1Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2022
The information of publication is updating

書目名稱Geometry of the Unit Sphere in Polynomial Spaces影響因子(影響力)




書目名稱Geometry of the Unit Sphere in Polynomial Spaces影響因子(影響力)學(xué)科排名




書目名稱Geometry of the Unit Sphere in Polynomial Spaces網(wǎng)絡(luò)公開度




書目名稱Geometry of the Unit Sphere in Polynomial Spaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometry of the Unit Sphere in Polynomial Spaces被引頻次




書目名稱Geometry of the Unit Sphere in Polynomial Spaces被引頻次學(xué)科排名




書目名稱Geometry of the Unit Sphere in Polynomial Spaces年度引用




書目名稱Geometry of the Unit Sphere in Polynomial Spaces年度引用學(xué)科排名




書目名稱Geometry of the Unit Sphere in Polynomial Spaces讀者反饋




書目名稱Geometry of the Unit Sphere in Polynomial Spaces讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:17:25 | 只看該作者
2191-8198 tive by including in it over 50 original figures in order to help in the understanding of allthe results and techniques included in the book..978-3-031-23675-4978-3-031-23676-1Series ISSN 2191-8198 Series E-ISSN 2191-8201
板凳
發(fā)表于 2025-3-22 03:04:03 | 只看該作者
Polynomials of Degree ,premum norm defined on the interval [?1, 1] (when the polynomial is defined over .) or on the unit disk (when the polynomial is defined over .). More precisely, we are interested on the parametrization of the unit ball as well as the extreme points when we are dealing with the space of polynomials o
地板
發(fā)表于 2025-3-22 05:53:00 | 只看該作者
Spaces of Trinomials,nt scenarios. To be more precise, we will study the geometry of the space of real trinomials in one variable with the supremum norm and the . norm, the space of real trinomials in two variables with the supremum norm and finally the space of complex trinomials with the supremum norm.
5#
發(fā)表于 2025-3-22 10:07:51 | 只看該作者
Applications,orms whose unit balls can be described in ., but mainly we have tried to obtain the extreme polynomials of the unit balls. We have also studied some of the extreme polynomials in arbitrary dimensions and we have even described some of the extreme polynomials of arbitrary degree. The reason behind th
6#
發(fā)表于 2025-3-22 16:08:05 | 只看該作者
7#
發(fā)表于 2025-3-22 18:15:32 | 只看該作者
Polynomials of Degree ,precisely, we are interested on the parametrization of the unit ball as well as the extreme points when we are dealing with the space of polynomials of degree at most 2. For the space of polynomials of arbitrary degree with the supremum norm defined on [?1, 1], we are only interested on the extreme polynomials of the unit ball.
8#
發(fā)表于 2025-3-22 23:29:19 | 只看該作者
9#
發(fā)表于 2025-3-23 01:28:44 | 只看該作者
10#
發(fā)表于 2025-3-23 09:29:54 | 只看該作者
https://doi.org/10.1007/978-3-030-32918-1precisely, we are interested on the parametrization of the unit ball as well as the extreme points when we are dealing with the space of polynomials of degree at most 2. For the space of polynomials of arbitrary degree with the supremum norm defined on [?1, 1], we are only interested on the extreme polynomials of the unit ball.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平谷区| 宜城市| 大城县| 山阴县| 化隆| 高密市| 蒲城县| 钟山县| 崇明县| 元朗区| 丹东市| 托克逊县| 安康市| 汉阴县| 罗江县| 门源| 侯马市| 通榆县| 苍南县| 涟水县| 绥滨县| 乐亭县| 阿勒泰市| 巴马| 攀枝花市| 荔波县| 南雄市| 涟水县| 屯留县| 和静县| 辰溪县| 连云港市| 洮南市| 曲松县| 长丰县| 延长县| 和硕县| 闻喜县| 宁夏| 灵寿县| 雷州市|