找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Surfaces; John Stillwell Textbook 1992 Springer Science+Business Media New York 1992 Area.Fractal.curvature.differential geome

[復(fù)制鏈接]
樓主: 關(guān)稅
21#
發(fā)表于 2025-3-25 04:57:51 | 只看該作者
Von der Zerlegung der Zahlen in Teile,uch a surface would resemble ?. when extended indefinitely, even if small parts of it matched small parts of ?. with absolute precision. Indeed, we may never know enough about the large-scale structure of the universe to say what an unbounded flat surface would really be like. What we can do, however, is find which flat surfaces are . possible.
22#
發(fā)表于 2025-3-25 09:09:14 | 只看該作者
https://doi.org/10.1007/978-3-662-25901-6 local isometry between the line and the unit circle. The sphere, on the other hand, is . locally isometric to the plane, hence it is of interest as a self-contained structure. This intrinsic structure makes the sphere the first example of a non-euclidean geometry.
23#
發(fā)表于 2025-3-25 12:34:35 | 只看該作者
,Die Gr??enordnung der Kardinalzahlen,d-for-word (provided “l(fā)ine”, “distance” etc., are understood in the hyperbolic sense), showing that any complete, connected hyperbolic surface is of the form ?./Γ, where Γ is a discontinuous, fixed point free group of ?.-isometries.
24#
發(fā)表于 2025-3-25 16:45:51 | 只看該作者
25#
發(fā)表于 2025-3-25 22:56:39 | 只看該作者
26#
發(fā)表于 2025-3-26 02:42:13 | 只看該作者
27#
發(fā)表于 2025-3-26 04:52:48 | 只看該作者
28#
發(fā)表于 2025-3-26 11:44:47 | 只看該作者
29#
發(fā)表于 2025-3-26 13:51:38 | 只看該作者
30#
發(fā)表于 2025-3-26 20:44:54 | 只看該作者
Planar and Spherical Tessellations,ges). The isometries of . onto itself are called . of ., and they form a group called the . of . Thus, we are defining . to be symmetric if its symmetry group contains enough elements to map any tile onto any other tile.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
繁峙县| 桓台县| 司法| 瑞昌市| 富蕴县| 谷城县| 长治市| 大港区| 礼泉县| 库尔勒市| 洞头县| 兴仁县| 延长县| 左贡县| 琼中| 云安县| 吉水县| 金华市| 中西区| 永新县| 绍兴市| 石门县| 常熟市| 吉木乃县| 彰武县| 萨迦县| 阳山县| 巢湖市| 民县| 高平市| 衢州市| 兴化市| 钦州市| 溆浦县| 台东市| 巴彦县| 泰来县| 沙河市| 克山县| 静海县| 阳东县|