找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Surfaces; John Stillwell Textbook 1992 Springer Science+Business Media New York 1992 Area.Fractal.curvature.differential geome

[復(fù)制鏈接]
樓主: 關(guān)稅
21#
發(fā)表于 2025-3-25 04:57:51 | 只看該作者
Von der Zerlegung der Zahlen in Teile,uch a surface would resemble ?. when extended indefinitely, even if small parts of it matched small parts of ?. with absolute precision. Indeed, we may never know enough about the large-scale structure of the universe to say what an unbounded flat surface would really be like. What we can do, however, is find which flat surfaces are . possible.
22#
發(fā)表于 2025-3-25 09:09:14 | 只看該作者
https://doi.org/10.1007/978-3-662-25901-6 local isometry between the line and the unit circle. The sphere, on the other hand, is . locally isometric to the plane, hence it is of interest as a self-contained structure. This intrinsic structure makes the sphere the first example of a non-euclidean geometry.
23#
發(fā)表于 2025-3-25 12:34:35 | 只看該作者
,Die Gr??enordnung der Kardinalzahlen,d-for-word (provided “l(fā)ine”, “distance” etc., are understood in the hyperbolic sense), showing that any complete, connected hyperbolic surface is of the form ?./Γ, where Γ is a discontinuous, fixed point free group of ?.-isometries.
24#
發(fā)表于 2025-3-25 16:45:51 | 只看該作者
25#
發(fā)表于 2025-3-25 22:56:39 | 只看該作者
26#
發(fā)表于 2025-3-26 02:42:13 | 只看該作者
27#
發(fā)表于 2025-3-26 04:52:48 | 只看該作者
28#
發(fā)表于 2025-3-26 11:44:47 | 只看該作者
29#
發(fā)表于 2025-3-26 13:51:38 | 只看該作者
30#
發(fā)表于 2025-3-26 20:44:54 | 只看該作者
Planar and Spherical Tessellations,ges). The isometries of . onto itself are called . of ., and they form a group called the . of . Thus, we are defining . to be symmetric if its symmetry group contains enough elements to map any tile onto any other tile.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德令哈市| 鸡西市| 仪征市| 土默特左旗| 中阳县| 鄂托克旗| 曲周县| 菏泽市| 永顺县| 德阳市| 陇川县| 池州市| 安泽县| 金昌市| 浮梁县| 油尖旺区| 古浪县| 自贡市| 镇江市| 达日县| 靖安县| 五莲县| 久治县| 克东县| 汽车| 嘉禾县| 财经| 芜湖县| 遵义县| 汉沽区| 马鞍山市| 永仁县| 通化市| 平果县| 涞水县| 海盐县| 宜宾市| 舟曲县| 扶余县| 密山市| 中阳县|