找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Submanifolds and Applications; Bang-Yen Chen,Majid Ali Choudhary,Mohammad Nazrul Book 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: Encounter
21#
發(fā)表于 2025-3-25 03:51:06 | 只看該作者
22#
發(fā)表于 2025-3-25 09:27:58 | 只看該作者
23#
發(fā)表于 2025-3-25 12:48:05 | 只看該作者
24#
發(fā)表于 2025-3-25 17:47:07 | 只看該作者
https://doi.org/10.1007/978-3-322-96170-9rvey of results on Lagrangian submanifolds . of the nearly K?hler . in terms of a canonically induced almost contact metric structure, Chen’s equality, normal connection, normal curvature operator, Ricci tensor and conformal flatness. In particular, conditions for . to be Sasakian and totally geodesic unit three-sphere are presented.
25#
發(fā)表于 2025-3-25 23:38:28 | 只看該作者
,Einkaufsverhandlungen (aus-)führen,odels of real space forms. They are defined by an equation based on the shape operator. We give several examples and observe that any Pythagorean submanifold is isoparametric where the principal curvatures are given in terms of the Golden ratio. We also classify Pythagorean hypersurfaces.
26#
發(fā)表于 2025-3-26 03:22:13 | 只看該作者
https://doi.org/10.1007/978-3-663-13458-9bmanifolds where equality scenarios are valid and present several applications of the main finding. Additionally, we create an inequality for Ricci solitons to discover connections between intrinsic and extrinsic invariants.
27#
發(fā)表于 2025-3-26 07:13:17 | 只看該作者
28#
發(fā)表于 2025-3-26 09:41:34 | 只看該作者
,A Survey on?Lagrangian Submanifolds of?Nearly Kaehler Six-Sphere,rvey of results on Lagrangian submanifolds . of the nearly K?hler . in terms of a canonically induced almost contact metric structure, Chen’s equality, normal connection, normal curvature operator, Ricci tensor and conformal flatness. In particular, conditions for . to be Sasakian and totally geodesic unit three-sphere are presented.
29#
發(fā)表于 2025-3-26 14:36:29 | 只看該作者
30#
發(fā)表于 2025-3-26 19:49:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华安县| 三亚市| 肥城市| 红安县| 从化市| 达尔| 安乡县| 昌都县| 清丰县| 社旗县| 大石桥市| 长宁县| 应城市| 迁安市| 英超| 奎屯市| 全州县| 龙江县| 专栏| 光泽县| 宜川县| 防城港市| 安图县| 锦屏县| 会昌县| 蒲城县| 普兰店市| 鹤壁市| 布拖县| 丰县| 定安县| 昭觉县| 泸定县| 合川市| 旬阳县| 乐都县| 长阳| 彰化市| 玉树县| 宜良县| 新野县|