找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Subanalytic and Semialgebraic Sets; Masahiro Shiota Book 1997 Springer Science+Business Media New York 1997 Finite.algebra.ana

[復制鏈接]
查看: 15684|回復: 35
樓主
發(fā)表于 2025-3-21 17:06:04 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometry of Subanalytic and Semialgebraic Sets
編輯Masahiro Shiota
視頻videohttp://file.papertrans.cn/384/383828/383828.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: Geometry of Subanalytic and Semialgebraic Sets;  Masahiro Shiota Book 1997 Springer Science+Business Media New York 1997 Finite.algebra.ana
描述Real analytic sets in Euclidean space (Le. , sets defined locally at each point of Euclidean space by the vanishing of an analytic function) were first investigated in the 1950‘s by H. Cartan [Car], H. Whitney [WI-3], F. Bruhat [W-B] and others. Their approach was to derive information about real analytic sets from properties of their complexifications. After some basic geometrical and topological facts were established, however, the study of real analytic sets stagnated. This contrasted the rapid develop- ment of complex analytic geometry which followed the groundbreaking work of the early 1950‘s. Certain pathologies in the real case contributed to this failure to progress. For example, the closure of -or the connected components of-a constructible set (Le. , a locally finite union of differ- ences of real analytic sets) need not be constructible (e. g. , R - {O} and 3 2 2 { (x, y, z) E R : x = zy2, x + y2 -=I- O}, respectively). Responding to this in the 1960‘s, R. Thorn [Thl], S. Lojasiewicz [LI,2] and others undertook the study of a larger class of sets, the semianalytic sets, which are the sets defined locally at each point of Euclidean space by a finite number of ana- lytic f
出版日期Book 1997
關(guān)鍵詞Finite; algebra; analytic function; analytic geometry; class; form; function; geometry; information; pdc; proo
版次1
doihttps://doi.org/10.1007/978-1-4612-2008-4
isbn_softcover978-1-4612-7378-3
isbn_ebook978-1-4612-2008-4Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Science+Business Media New York 1997
The information of publication is updating

書目名稱Geometry of Subanalytic and Semialgebraic Sets影響因子(影響力)




書目名稱Geometry of Subanalytic and Semialgebraic Sets影響因子(影響力)學科排名




書目名稱Geometry of Subanalytic and Semialgebraic Sets網(wǎng)絡(luò)公開度




書目名稱Geometry of Subanalytic and Semialgebraic Sets網(wǎng)絡(luò)公開度學科排名




書目名稱Geometry of Subanalytic and Semialgebraic Sets被引頻次




書目名稱Geometry of Subanalytic and Semialgebraic Sets被引頻次學科排名




書目名稱Geometry of Subanalytic and Semialgebraic Sets年度引用




書目名稱Geometry of Subanalytic and Semialgebraic Sets年度引用學科排名




書目名稱Geometry of Subanalytic and Semialgebraic Sets讀者反饋




書目名稱Geometry of Subanalytic and Semialgebraic Sets讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:15:45 | 只看該作者
Einkauf und Einsatz von Unternehmenssoftwaretheorems in Chapter III are stated in a more general situation than X. The X-versions of the results of this section and Chapter III, except 1.1.6 and 1.1.7, can be proved without the method of integration. Note that the X-versions work in the . category, r a positive integer (see Chapter II).
板凳
發(fā)表于 2025-3-22 00:39:07 | 只看該作者
地板
發(fā)表于 2025-3-22 04:36:50 | 只看該作者
5#
發(fā)表于 2025-3-22 09:04:24 | 只看該作者
Triangulations of X-Maps, X-. of an X-set in a Euclidean space. Here note that the stratification is finite locally at each point of the Euclidean space and each stratum is not only an X-set and a . manifold but also a . X-submanifold of the Euclidean space (i.e., locally X-homeomorphic to a Euclidean space).
6#
發(fā)表于 2025-3-22 15:10:23 | 只看該作者
7#
發(fā)表于 2025-3-22 18:23:31 | 只看該作者
8#
發(fā)表于 2025-3-22 21:41:22 | 只看該作者
9#
發(fā)表于 2025-3-23 05:25:05 | 只看該作者
10#
發(fā)表于 2025-3-23 09:35:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 14:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
县级市| 鹰潭市| 临汾市| 浙江省| 奉节县| 常州市| 乃东县| 安义县| 凌云县| 新兴县| 桐梓县| 巴青县| 化隆| 徐州市| 新巴尔虎左旗| 永顺县| 万安县| 郸城县| 遂川县| 景泰县| 宝兴县| 崇阳县| 临泉县| 阜城县| 思南县| 化德县| 若尔盖县| 濉溪县| 疏勒县| 昭平县| 香格里拉县| 忻城县| 渭源县| 延吉市| 麻江县| 葵青区| 榆社县| 连城县| 特克斯县| 沙河市| 肥乡县|