找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Müntz Spaces and Related Questions; Vladimir Gurariy,Wolfgang Lusky Book 2005 Springer-Verlag Berlin Heidelberg 2005 Banach sp

[復制鏈接]
查看: 36634|回復: 50
樓主
發(fā)表于 2025-3-21 18:45:13 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometry of Müntz Spaces and Related Questions
編輯Vladimir Gurariy,Wolfgang Lusky
視頻videohttp://file.papertrans.cn/384/383820/383820.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Geometry of Müntz Spaces and Related Questions;  Vladimir Gurariy,Wolfgang Lusky Book 2005 Springer-Verlag Berlin Heidelberg 2005 Banach sp
描述.Starting point and motivation for this volume is the classical Muentz theorem which states that the space of all polynomials on the unit interval, whose exponents have too many gaps, is no longer dense in the space of all continuous functions. The resulting spaces of Muentz polynomials are largely unexplored as far as the Banach space geometry is concerned and deserve the attention that the authors arouse. They present the known theorems and prove new results concerning, for example, the isomorphic and isometric classification and the existence of bases in these spaces. Moreover they state many open problems. Although the viewpoint is that of the geometry of Banach spaces they only assume that the reader is familiar with basic functional analysis. In the first part of the book the Banach spaces notions are systematically introduced and are later on applied for Muentz spaces. They include the opening and inclination of subspaces, bases and bounded approximation properties and versions of universality..
出版日期Book 2005
關鍵詞Banach spaces; Muentz polynomials; Muentz spaces; Volume; functional analysis; minimal sequences
版次1
doihttps://doi.org/10.1007/11551621
isbn_softcover978-3-540-28800-8
isbn_ebook978-3-540-31546-9Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 2005
The information of publication is updating

書目名稱Geometry of Müntz Spaces and Related Questions影響因子(影響力)




書目名稱Geometry of Müntz Spaces and Related Questions影響因子(影響力)學科排名




書目名稱Geometry of Müntz Spaces and Related Questions網(wǎng)絡公開度




書目名稱Geometry of Müntz Spaces and Related Questions網(wǎng)絡公開度學科排名




書目名稱Geometry of Müntz Spaces and Related Questions被引頻次




書目名稱Geometry of Müntz Spaces and Related Questions被引頻次學科排名




書目名稱Geometry of Müntz Spaces and Related Questions年度引用




書目名稱Geometry of Müntz Spaces and Related Questions年度引用學科排名




書目名稱Geometry of Müntz Spaces and Related Questions讀者反饋




書目名稱Geometry of Müntz Spaces and Related Questions讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:27:33 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:47:37 | 只看該作者
Geometry of Müntz Spaces and Related Questions978-3-540-31546-9Series ISSN 0075-8434 Series E-ISSN 1617-9692
地板
發(fā)表于 2025-3-22 07:26:22 | 只看該作者
,Elektromagnetische Ausgleichsvorg?nge,11.1.2 and 11.2.6) as well as on interpolation (11.3.1). Moreover, we investigate which of these spaces can be embedded into .. Finally we deal with notions of universality for Müntz sequences and spaces.
5#
發(fā)表于 2025-3-22 11:10:58 | 只看該作者
,Elektromagnetische Ausgleichsvorg?nge,11.1.2 and 11.2.6) as well as on interpolation (11.3.1). Moreover, we investigate which of these spaces can be embedded into .. Finally we deal with notions of universality for Müntz sequences and spaces.
6#
發(fā)表于 2025-3-22 14:38:12 | 只看該作者
7#
發(fā)表于 2025-3-22 21:06:39 | 只看該作者
8#
發(fā)表于 2025-3-22 21:17:18 | 只看該作者
9#
發(fā)表于 2025-3-23 03:09:46 | 只看該作者
Einführung in die technische Str?mungslehreIn this chapter we discuss how two or more subspaces in a Banach space affect each other by their position in a Banach space and we give applications in the geometry of Banach spaces.
10#
發(fā)表于 2025-3-23 07:32:37 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
建水县| 浑源县| 昭通市| 溧水县| 临江市| 新邵县| 建德市| 微山县| 凭祥市| 图木舒克市| 五峰| 教育| 梅州市| 青川县| 思南县| 临沧市| 达州市| 沙坪坝区| 鄯善县| 金昌市| 金塔县| 南溪县| 建湖县| 崇礼县| 靖州| 临武县| 上杭县| 海伦市| 澄江县| 滕州市| 凤山市| 余干县| 视频| 丁青县| 成武县| 和政县| 宁武县| 宁化县| 东莞市| 宜阳县| 偃师市|