找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Moduli; Jan Arthur Christophersen,Kristian Ranestad Conference proceedings 2018 Springer Nature Switzerland AG 2018 algebraic

[復(fù)制鏈接]
樓主: fumble
31#
發(fā)表于 2025-3-26 23:41:01 | 只看該作者
32#
發(fā)表于 2025-3-27 01:29:08 | 只看該作者
Conference proceedings 2018esearch articles on the recent surge of developments?in understanding moduli problems in algebraic geometry. Written by?many of the main contributors to this evolving subject, the book provides a comprehensive?collection of new methods and the various directions in which moduli theory is?advancing.
33#
發(fā)表于 2025-3-27 08:19:18 | 只看該作者
34#
發(fā)表于 2025-3-27 10:20:55 | 只看該作者
35#
發(fā)表于 2025-3-27 14:13:06 | 只看該作者
Einführung in die synoptische Wetteranalyseion theoretic approaches to the problem. The appendix provides a detailed discussion of computational methods based on trace formulae and automorphic representations, in particular Arthur’s endoscopic classification of automorphic representations for symplectic groups.
36#
發(fā)表于 2025-3-27 18:51:18 | 只看該作者
Stratifying Quotient Stacks and Moduli Stacks,.∕.], where . is a projective scheme and . is a linear algebraic group with internally graded unipotent radical acting linearly on ., in such a way that each stratum [.∕.] has a geometric quotient .∕.. This leads to stratifications of moduli stacks (for example, sheaves over a projective scheme) suc
37#
發(fā)表于 2025-3-27 22:51:38 | 只看該作者
38#
發(fā)表于 2025-3-28 02:05:19 | 只看該作者
The Moduli Spaces of Sheaves on Surfaces, Pathologies and Brill-Noether Problems,rill-Noether problem for rational surfaces. In order to highlight some of the difficulties for more general surfaces, we show that moduli spaces of rank 2 sheaves on very general hypersurfaces of degree . in . can have arbitrarily many irreducible components as . tends to infinity.
39#
發(fā)表于 2025-3-28 08:16:42 | 只看該作者
40#
發(fā)表于 2025-3-28 12:01:52 | 只看該作者
The Topology of , and Its Compactifications,ns. The main emphasis lies on the computation of the cohomology for small genus and on stabilization results. We review both geometric and representation theoretic approaches to the problem. The appendix provides a detailed discussion of computational methods based on trace formulae and automorphic
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天台县| 乐平市| 九龙坡区| 镇原县| 金溪县| 汾西县| 乌苏市| 禄劝| 灌阳县| 仲巴县| 浦北县| 邓州市| 永安市| 嘉定区| 盐池县| 禹城市| 仁怀市| 宾阳县| 新乐市| 麦盖提县| 泽库县| 青田县| 开化县| 乌审旗| 麻栗坡县| 文登市| 肃宁县| 札达县| 庆阳市| 五台县| 十堰市| 建阳市| 濉溪县| 新宾| 大名县| 宜丰县| 临泽县| 崇礼县| 甘谷县| 双江| 昌江|