找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Minkowski Space-Time; Francesco Catoni,Dino Boccaletti,Paolo Zampetti Book 2011 Francesco Catoni 2011 Minkowski space-time.hy

[復(fù)制鏈接]
樓主: Intimidate
21#
發(fā)表于 2025-3-25 05:25:08 | 只看該作者
22#
發(fā)表于 2025-3-25 09:50:16 | 只看該作者
23#
發(fā)表于 2025-3-25 14:42:19 | 只看該作者
Trigonometry in the Hyperbolic (Minkowski) Plane,nks to the equivalent properties between complex and hyperbolic numbers, the geometry of Minkowski space-time can be formalized in a similar algebraic way. Moreover, introducing two invariant quantities, the complete formalization of space-time trigonometry is obtained.
24#
發(fā)表于 2025-3-25 18:49:12 | 只看該作者
25#
發(fā)表于 2025-3-25 22:43:48 | 只看該作者
Some Final Considerations,e as we usually do for Euclidean plane geometry. Otherwise the obtained mathematical system, following Euclidean geometry, combine the logical vision with the intuitive vision allowing us to agree with the following Einstein’s thought.
26#
發(fā)表于 2025-3-26 03:47:39 | 只看該作者
Introduction,c (e.m.) theory of obeying Galilean transformations. The non-invariance of the e.m. theory under Galilean transformations induced the theoretical physicists, at the end of the twelfth century, to invent new space–time transformations which did not allow to consider the time variable as “absolutely”
27#
發(fā)表于 2025-3-26 04:49:40 | 只看該作者
28#
發(fā)表于 2025-3-26 10:44:14 | 只看該作者
Trigonometry in the Hyperbolic (Minkowski) Plane,nks to the equivalent properties between complex and hyperbolic numbers, the geometry of Minkowski space-time can be formalized in a similar algebraic way. Moreover, introducing two invariant quantities, the complete formalization of space-time trigonometry is obtained.
29#
發(fā)表于 2025-3-26 13:45:17 | 只看該作者
30#
發(fā)表于 2025-3-26 17:07:23 | 只看該作者
Some Final Considerations,e as we usually do for Euclidean plane geometry. Otherwise the obtained mathematical system, following Euclidean geometry, combine the logical vision with the intuitive vision allowing us to agree with the following Einstein’s thought.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 20:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华容县| 尼勒克县| 张掖市| 兰考县| 寿光市| 龙江县| 合作市| 莱阳市| 大港区| 彝良县| 土默特左旗| 永善县| 泰顺县| 太白县| 漳州市| 绿春县| 新乐市| 十堰市| 乌什县| 丹阳市| 神农架林区| 沛县| 溧阳市| 泰安市| 邻水| 旬邑县| 洪洞县| 逊克县| 淅川县| 长宁县| 陆良县| 德令哈市| 兴城市| 西林县| 富平县| 会宁县| 泽州县| 常山县| 宁国市| 永安市| 辛集市|