找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Minkowski Space-Time; Francesco Catoni,Dino Boccaletti,Paolo Zampetti Book 2011 Francesco Catoni 2011 Minkowski space-time.hy

[復(fù)制鏈接]
樓主: Intimidate
21#
發(fā)表于 2025-3-25 05:25:08 | 只看該作者
22#
發(fā)表于 2025-3-25 09:50:16 | 只看該作者
23#
發(fā)表于 2025-3-25 14:42:19 | 只看該作者
Trigonometry in the Hyperbolic (Minkowski) Plane,nks to the equivalent properties between complex and hyperbolic numbers, the geometry of Minkowski space-time can be formalized in a similar algebraic way. Moreover, introducing two invariant quantities, the complete formalization of space-time trigonometry is obtained.
24#
發(fā)表于 2025-3-25 18:49:12 | 只看該作者
25#
發(fā)表于 2025-3-25 22:43:48 | 只看該作者
Some Final Considerations,e as we usually do for Euclidean plane geometry. Otherwise the obtained mathematical system, following Euclidean geometry, combine the logical vision with the intuitive vision allowing us to agree with the following Einstein’s thought.
26#
發(fā)表于 2025-3-26 03:47:39 | 只看該作者
Introduction,c (e.m.) theory of obeying Galilean transformations. The non-invariance of the e.m. theory under Galilean transformations induced the theoretical physicists, at the end of the twelfth century, to invent new space–time transformations which did not allow to consider the time variable as “absolutely”
27#
發(fā)表于 2025-3-26 04:49:40 | 只看該作者
28#
發(fā)表于 2025-3-26 10:44:14 | 只看該作者
Trigonometry in the Hyperbolic (Minkowski) Plane,nks to the equivalent properties between complex and hyperbolic numbers, the geometry of Minkowski space-time can be formalized in a similar algebraic way. Moreover, introducing two invariant quantities, the complete formalization of space-time trigonometry is obtained.
29#
發(fā)表于 2025-3-26 13:45:17 | 只看該作者
30#
發(fā)表于 2025-3-26 17:07:23 | 只看該作者
Some Final Considerations,e as we usually do for Euclidean plane geometry. Otherwise the obtained mathematical system, following Euclidean geometry, combine the logical vision with the intuitive vision allowing us to agree with the following Einstein’s thought.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 20:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新河县| 加查县| 大安市| 封开县| 津市市| 曲沃县| 黄陵县| 泸水县| 汝州市| 嘉峪关市| 梓潼县| 当阳市| 深水埗区| 普格县| 诸暨市| 满城县| 嘉定区| 田阳县| 正蓝旗| 汝州市| 昭平县| 恩平市| 延边| 同江市| 汝南县| 元阳县| 方山县| 泗阳县| 神农架林区| 三亚市| 兴海县| 萨迦县| 和顺县| 瓦房店市| 义马市| 临邑县| 吉首市| 东至县| 闽清县| 乌海市| 吕梁市|