找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Linear Matrix Inequalities; A Course in Convexit Tim Netzer,Daniel Plaumann Textbook 2023 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
查看: 25508|回復(fù): 35
樓主
發(fā)表于 2025-3-21 20:09:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometry of Linear Matrix Inequalities
副標(biāo)題A Course in Convexit
編輯Tim Netzer,Daniel Plaumann
視頻videohttp://file.papertrans.cn/384/383816/383816.mp4
概述Unifies recent key results, along with elementary proofs.Includes many exercises for active learning.Appeals to mathematical researchers across diverse fields
叢書名稱Compact Textbooks in Mathematics
圖書封面Titlebook: Geometry of Linear Matrix Inequalities; A Course in Convexit Tim Netzer,Daniel Plaumann Textbook 2023 The Editor(s) (if applicable) and The
描述This textbook provides a thorough introduction to spectrahedra, which are the solution sets to linear matrix inequalities, emerging in convex and polynomial optimization, analysis, combinatorics, and algebraic geometry. Including a wealth of examples and exercises, this textbook guides the reader in helping to determine the convex sets that can be represented and approximated as spectrahedra and their shadows (projections). Several general results obtained in the last 15 years by a variety of different methods are presented in the book, along with the necessary background from algebra and geometry..
出版日期Textbook 2023
關(guān)鍵詞Real Algebraic Geometry; Convex Geometry; Matrices; Polynomial Optimization; Sums of Squares; Eigenvalues
版次1
doihttps://doi.org/10.1007/978-3-031-26455-9
isbn_softcover978-3-031-26454-2
isbn_ebook978-3-031-26455-9Series ISSN 2296-4568 Series E-ISSN 2296-455X
issn_series 2296-4568
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Geometry of Linear Matrix Inequalities影響因子(影響力)




書目名稱Geometry of Linear Matrix Inequalities影響因子(影響力)學(xué)科排名




書目名稱Geometry of Linear Matrix Inequalities網(wǎng)絡(luò)公開度




書目名稱Geometry of Linear Matrix Inequalities網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometry of Linear Matrix Inequalities被引頻次




書目名稱Geometry of Linear Matrix Inequalities被引頻次學(xué)科排名




書目名稱Geometry of Linear Matrix Inequalities年度引用




書目名稱Geometry of Linear Matrix Inequalities年度引用學(xué)科排名




書目名稱Geometry of Linear Matrix Inequalities讀者反饋




書目名稱Geometry of Linear Matrix Inequalities讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:18:25 | 只看該作者
Das Konzept der zweiseitigen M?rkteIn this first chapter we give an introduction and outline of the topics from the book. We also introduce basic notions and results from linear algebra, convexity theory and real algebraic geometry.
板凳
發(fā)表于 2025-3-22 03:13:59 | 只看該作者
地板
發(fā)表于 2025-3-22 05:45:12 | 只看該作者
5#
發(fā)表于 2025-3-22 11:37:29 | 只看該作者
Linear Matrix Inequalities and Spectrahedra,In this chapter we introduce the notion of a spectrahedron, and thoroughly study its properties. We will see many examples, and learn methods to determine whether a given set is a spectrahedron or not. In most cases we will also obtain procedures to explicitly construct defining linear matrix inequalities.
6#
發(fā)表于 2025-3-22 14:38:55 | 只看該作者
7#
發(fā)表于 2025-3-22 17:36:44 | 只看該作者
https://doi.org/10.1007/978-3-031-26455-9Real Algebraic Geometry; Convex Geometry; Matrices; Polynomial Optimization; Sums of Squares; Eigenvalues
8#
發(fā)表于 2025-3-22 21:14:28 | 只看該作者
9#
發(fā)表于 2025-3-23 03:51:20 | 只看該作者
10#
發(fā)表于 2025-3-23 06:26:35 | 只看該作者
Textbook 2023nomial optimization, analysis, combinatorics, and algebraic geometry. Including a wealth of examples and exercises, this textbook guides the reader in helping to determine the convex sets that can be represented and approximated as spectrahedra and their shadows (projections). Several general result
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赤城县| 丰县| 嘉禾县| 五原县| 景德镇市| 伊川县| 苏尼特右旗| 绩溪县| 襄汾县| 眉山市| 晋宁县| 宜黄县| 汉沽区| 驻马店市| 邵武市| 元江| 大竹县| 淄博市| 金沙县| 栾城县| 江门市| 保亭| 阜新市| 全南县| 亚东县| 镶黄旗| 罗江县| 镇宁| 大冶市| 平南县| 玛沁县| 曲沃县| 沭阳县| 乌拉特前旗| 西乡县| 桃园县| 山阴县| 杨浦区| 塔河县| 鄂托克旗| 本溪市|