找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Lie Groups; Boris Rosenfeld Book 1997 Springer Science+Business Media Dordrecht 1997 Grad.algebra.associative algebra.finite g

[復(fù)制鏈接]
查看: 30377|回復(fù): 42
樓主
發(fā)表于 2025-3-21 16:12:19 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometry of Lie Groups
編輯Boris Rosenfeld
視頻videohttp://file.papertrans.cn/384/383814/383814.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: Geometry of Lie Groups;  Boris Rosenfeld Book 1997 Springer Science+Business Media Dordrecht 1997 Grad.algebra.associative algebra.finite g
描述This book is the result of many years of research in Non-Euclidean Geometries and Geometry of Lie groups, as well as teaching at Moscow State University (1947- 1949), Azerbaijan State University (Baku) (1950-1955), Kolomna Pedagogical Col- lege (1955-1970), Moscow Pedagogical University (1971-1990), and Pennsylvania State University (1990-1995). My first books on Non-Euclidean Geometries and Geometry of Lie groups were written in Russian and published in Moscow: Non-Euclidean Geometries (1955) [Ro1] , Multidimensional Spaces (1966) [Ro2] , and Non-Euclidean Spaces (1969) [Ro3]. In [Ro1] I considered non-Euclidean geometries in the broad sense, as geometry of simple Lie groups, since classical non-Euclidean geometries, hyperbolic and elliptic, are geometries of simple Lie groups of classes Bn and D , and geometries of complex n and quaternionic Hermitian elliptic and hyperbolic spaces are geometries of simple Lie groups of classes An and en. [Ro1] contains an exposition of the geometry of classical real non-Euclidean spaces and their interpretations as hyperspheres with identified antipodal points in Euclidean or pseudo-Euclidean spaces, and in projective and conformal spaces. Numer
出版日期Book 1997
關(guān)鍵詞Grad; algebra; associative algebra; finite group; lie group
版次1
doihttps://doi.org/10.1007/978-1-4757-5325-7
isbn_softcover978-1-4419-4769-7
isbn_ebook978-1-4757-5325-7
copyrightSpringer Science+Business Media Dordrecht 1997
The information of publication is updating

書目名稱Geometry of Lie Groups影響因子(影響力)




書目名稱Geometry of Lie Groups影響因子(影響力)學(xué)科排名




書目名稱Geometry of Lie Groups網(wǎng)絡(luò)公開度




書目名稱Geometry of Lie Groups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometry of Lie Groups被引頻次




書目名稱Geometry of Lie Groups被引頻次學(xué)科排名




書目名稱Geometry of Lie Groups年度引用




書目名稱Geometry of Lie Groups年度引用學(xué)科排名




書目名稱Geometry of Lie Groups讀者反饋




書目名稱Geometry of Lie Groups讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:58:29 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:04:27 | 只看該作者
Euclidean, Pseudo-Euclidean, Conformal and Pseudoconformal Geometries, . = .... of this space by itself is a positive definite quadratic form .. = ......, this space is also called a .. In . we have seen that the space .. also satisfies the axioms ..1° – 3° of a metric space.
地板
發(fā)表于 2025-3-22 05:25:43 | 只看該作者
5#
發(fā)表于 2025-3-22 10:14:59 | 只看該作者
6#
發(fā)表于 2025-3-22 13:07:49 | 只看該作者
Symplectic and Quasisymplectic Geometries,figures in the space ... In . we have also seen that, besides hyperquadrics, in .. there are cosymmetry figures of an other kind: linear complexes of lines. The space .. in which a linear complex of lines is given is said to be a . and is denoted by ... The linear complex determining this space is c
7#
發(fā)表于 2025-3-22 19:03:59 | 只看該作者
8#
發(fā)表于 2025-3-22 21:12:57 | 只看該作者
spaces are geometries of simple Lie groups of classes An and en. [Ro1] contains an exposition of the geometry of classical real non-Euclidean spaces and their interpretations as hyperspheres with identified antipodal points in Euclidean or pseudo-Euclidean spaces, and in projective and conformal spaces. Numer978-1-4419-4769-7978-1-4757-5325-7
9#
發(fā)表于 2025-3-23 01:39:18 | 只看該作者
10#
發(fā)表于 2025-3-23 05:56:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
无锡市| 思茅市| 阿拉善右旗| 亳州市| 莲花县| 浦县| 黄大仙区| 广州市| 麻城市| 资阳市| 托克逊县| 大方县| 漯河市| 沅陵县| 盱眙县| 合川市| 临沭县| 来安县| 德令哈市| 米易县| 清流县| 额敏县| 石狮市| 兴宁市| 长泰县| 上蔡县| 固原市| 句容市| 额济纳旗| 灵川县| 五家渠市| 西盟| 阜新市| 安丘市| 金堂县| 四川省| 隆回县| 屯昌县| 岗巴县| 冀州市| 宣武区|