找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Hypersurfaces; Thomas E. Cecil,Patrick J. Ryan Book 2015 Thomas E. Cecil and Patrick J. Ryan 2015 Dupin hypersurfaces.Hopf hyp

[復(fù)制鏈接]
樓主: 退縮
21#
發(fā)表于 2025-3-25 05:26:42 | 只看該作者
Systeme von linearen Gleichungen,In this chapter, we study the basic geometry of complex submanifolds in complex space forms, focusing on important examples that arise in the classifications of Hopf hypersurfaces with constant principal curvatures.
22#
發(fā)表于 2025-3-25 10:29:37 | 只看該作者
23#
發(fā)表于 2025-3-25 13:23:08 | 只看該作者
Complex Submanifolds of ,, and ,,,In this chapter, we study the basic geometry of complex submanifolds in complex space forms, focusing on important examples that arise in the classifications of Hopf hypersurfaces with constant principal curvatures.
24#
發(fā)表于 2025-3-25 17:48:46 | 只看該作者
,Die Mi?bildungen des weiblichen Genitales,aces in later chapters. Topics treated include focal sets, parallel hypersurfaces, tubes, tight and taut immersions, the relationship between taut and Dupin submanifolds, and the standard embeddings of projective spaces.
25#
發(fā)表于 2025-3-25 21:03:00 | 只看該作者
26#
發(fā)表于 2025-3-26 02:50:51 | 只看該作者
27#
發(fā)表于 2025-3-26 05:21:13 | 只看該作者
Idealtypen als hypothesenbildende Modelle: sphere geometry, and many classification results have been obtained in that setting. In this chapter, we will use the viewpoint of the metric geometry of . as well as that of Lie sphere geometry to obtain results about Dupin hypersurfaces.
28#
發(fā)表于 2025-3-26 10:37:23 | 只看該作者
29#
發(fā)表于 2025-3-26 14:50:21 | 只看該作者
Anwendungen der Differentialquotienten,Berndt [30] in .. (see Theorem?8.12). These classifications state that such a hypersurface is an open subset of a hypersurface on Takagi’s list for .., and on Montiel’s list for ... We then study several characterizations of these hypersurfaces based on conditions on their shape operators, curvature
30#
發(fā)表于 2025-3-26 18:29:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 09:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴安盟| 通州市| 卢龙县| 克什克腾旗| 大足县| 连平县| 锦州市| 宜阳县| 广水市| 海淀区| 莒南县| 皋兰县| 天水市| 漠河县| 武义县| 烟台市| 章丘市| 偃师市| 滦南县| 长白| 萨迦县| 小金县| 夏河县| 龙川县| 饶河县| 永年县| 阳谷县| 安康市| 确山县| 长丰县| 台北市| 灌南县| 洛阳市| 临桂县| 鄂尔多斯市| 赣榆县| 梅河口市| 古蔺县| 玛纳斯县| 新宾| 米脂县|