找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Hypersurfaces; Thomas E. Cecil,Patrick J. Ryan Book 2015 Thomas E. Cecil and Patrick J. Ryan 2015 Dupin hypersurfaces.Hopf hyp

[復(fù)制鏈接]
樓主: 退縮
21#
發(fā)表于 2025-3-25 05:26:42 | 只看該作者
Systeme von linearen Gleichungen,In this chapter, we study the basic geometry of complex submanifolds in complex space forms, focusing on important examples that arise in the classifications of Hopf hypersurfaces with constant principal curvatures.
22#
發(fā)表于 2025-3-25 10:29:37 | 只看該作者
23#
發(fā)表于 2025-3-25 13:23:08 | 只看該作者
Complex Submanifolds of ,, and ,,,In this chapter, we study the basic geometry of complex submanifolds in complex space forms, focusing on important examples that arise in the classifications of Hopf hypersurfaces with constant principal curvatures.
24#
發(fā)表于 2025-3-25 17:48:46 | 只看該作者
,Die Mi?bildungen des weiblichen Genitales,aces in later chapters. Topics treated include focal sets, parallel hypersurfaces, tubes, tight and taut immersions, the relationship between taut and Dupin submanifolds, and the standard embeddings of projective spaces.
25#
發(fā)表于 2025-3-25 21:03:00 | 只看該作者
26#
發(fā)表于 2025-3-26 02:50:51 | 只看該作者
27#
發(fā)表于 2025-3-26 05:21:13 | 只看該作者
Idealtypen als hypothesenbildende Modelle: sphere geometry, and many classification results have been obtained in that setting. In this chapter, we will use the viewpoint of the metric geometry of . as well as that of Lie sphere geometry to obtain results about Dupin hypersurfaces.
28#
發(fā)表于 2025-3-26 10:37:23 | 只看該作者
29#
發(fā)表于 2025-3-26 14:50:21 | 只看該作者
Anwendungen der Differentialquotienten,Berndt [30] in .. (see Theorem?8.12). These classifications state that such a hypersurface is an open subset of a hypersurface on Takagi’s list for .., and on Montiel’s list for ... We then study several characterizations of these hypersurfaces based on conditions on their shape operators, curvature
30#
發(fā)表于 2025-3-26 18:29:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 09:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
无锡市| 开远市| 湾仔区| 昔阳县| 六盘水市| 灌南县| 三亚市| 汪清县| 新竹县| 博湖县| 株洲县| 方正县| 乌拉特后旗| 五寨县| 和平区| 嘉祥县| 尼勒克县| 定安县| 麻江县| 郯城县| 绩溪县| 建德市| 正镶白旗| 郧西县| 永修县| 南溪县| 诸城市| 阿拉尔市| 张家港市| 泗洪县| 高雄县| 高碑店市| 长丰县| 濉溪县| 沁水县| 天全县| 沈阳市| 凉山| 仁布县| 瓦房店市| 专栏|